Sparse and Low-Rank: Resource-Efficient Methods in Machine Learning Kiran Vodrahalli **Columbia University** January 11, 2022

A challenge in modern machine learning:

A challenge in modern machine learning:

Can we mitigate computational/statistical strains of large nonlinear models via

Sparse models?:

Can we mitigate computational/statistical strains of large nonlinear models via

Low-rank models?: $\sigma(d x^r) \times r d \chi)$

Outline of the Talk

1. Sparse machine learning for monomials

2. Low rank deep learning

3. Future research plans

Sparse Machine Learning

(Attribute-Efficient Learning of Monomials over Highly-Correlated Variables) Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, **Kiran Vodrahalli** ALT 2019

Learning Sparse Monomials

Sparse high-dim log-log regression

In *p* dimensions and *k* sparse

Ex:
$$f(x_1, ..., x_p) \coloneqq x_3 \cdot x_{17} \cdot x_{44} \cdot x_{79}$$

 $k = 4$

Learning Sparse Monomials

A Simple Nonlinear Function Class

In *p* dimensions and *k* sparse

Ex:
$$f(x_1, \dots, x_p) \coloneqq x_3 \cdot x_{17} \cdot x_{44} \cdot x_{79}$$

 $k = 4$

The Learning Problem

Given:
$$\left\{\left(x^{(i)}, f(x^{(i)})\right)\right\}_{i=1}^{m}$$
, drawn i.i.d.

Assumption 1: f is a k-sparse monomial function

Assumption 2:
$$\mathbf{x}^{(i)} \sim \mathcal{N}(0, \Sigma)$$

Goal: Recover *f* exactly

Attribute-Efficient Learning

•Sample efficiency: m = poly(log(p), k)

•Runtime efficiency: poly(p, k, m) ops

•Goal: achieve both!

Motivation

$x_i \in \{\pm 1\}$

- Monomials \equiv Parity functions
- No attribute-efficient algs! [Helmbold+ '92, Blum'98, Klivans&Servedio'06, Kalai+'09, Kocaoglu+'14...]

 $x_i \in \mathbb{R}$

- Sparse sums of monomials [Andoni+'14]
 - For **uncorrelated** features:

Motivation

Outline for This Project

1. Algorithm

2. Analysis

3. Conclusion

1. Algorithm

The Algorithm

$$\mathsf{Ex}: f(x_1, \dots, x_p) \coloneqq x_3 \cdot x_{17} \cdot x_{44} \cdot x_{79}$$

Why is our Algorithm Attribute-Efficient?

Runtime: basis pursuit is efficient

Key Question: Sample complexity
Sparse linear regression analysis on transformed vars?
E.g.:

 $\log |f(x_1, \dots, x_p)| \coloneqq \log |x_3| + \log |x_{17}| + \log |x_{44}| + \log |x_{79}|$

• To prove: sparse linear regression recovery holds

2. Analysis

Restricted Eigenvalue Condition [Bickel, Ritov, & Tsybakov '09]

Restricted Eigenvalue
$$RE(k)$$
 $\min_{v \in C} \frac{v^T X X^T v}{||v||_2^2} > \epsilon$ "restricted strong convexity"Note: $RE(k) \ge \lambda_{min}(XX^T)$ ufficient to prove exact recoveryor basis pursuit inparse linear regression!

f

Degenerate High Correlation

Consider the example:

3-sparse

0-eigenvectors can be *k*-sparse

Sparse recovery conditions false!

Log-Transform affects Data Covariance

$\mathbf{T} = \mathbb{E}[\log|x|\log|x|^T]$

Sample Complexity Analysis

$\mathbf{T} = \mathbb{E}[\log|x|\log|x|^T]$

Sample Complexity Analysis

3. Conclusion

- Attribute-efficient algorithm for **monomials**
 - Prior (nonlinear) work: uncorrelated features
 - This work: allow highly **correlated** features
 - Works beyond multilinear monomials

• Blessing of nonlinearity

Low Rank Deep Learning

Kiran Vodrahalli, Rakesh Shivanna, Mahesh Sathiamoorthy, Sagar Jain, Ed Chi Google Brain Research Internship (Summer + Fall 2021)

Speeding Up Deep Nets

• Deep neural networks are extremely large today.

• Goal: speed up forward and backward passes

• Example approach: sparse deep networks

Low Rank Deep Models

Replace full-rank layers with low-rank equivalents:

Given weights of layer *i*:

$$W_i = U_i V_i^T$$

Then replace the standard parameterization w/RHS.

Prior Work [Khodak et. al. 2021]

 Low-rank methods outperform sparse methods if tuned correctly

• Key issues:

1) Initialization of the low-rank parameters
2) Regularization of weights

Impact of Initialization

 Can achieve ~ 1% additive gain in accuracy by choosing better initialization

Khodak et al 2021 studies small image classification datasets

• Key approach: **spectral initialization**

Outline for This Project

1. Low-Rank Initialization Scheme

2. Theory

1. Low-Rank Initialization Scheme

Spectral Initialization

For each layer $W \in \mathbb{R}^{m \times n} \sim D$:

Minimize the Frobenius distance between the fullrank initialization **parameters** and the low rank parameters:

$$\min_{U \in \mathbb{R}^m \times r, V \in \mathbb{R}^n \times r} ||W - UV^T||_F^2$$

Generalized Spectral Initialization

For each layer $W \in \mathbb{R}^{m \times n} \sim D$ with nonlinearity σ :

Perform **distillation**: Minimize ℓ_2^2 error between the **function** outputs of full-rank initialization and low rank initialization:

 $\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} E_{x \sim N(0,I)}[||\sigma(Wx) - \sigma(UV^{T}x)||_{2}^{2}]$

Generalized Spectral Initialization

For each layer $W \in \mathbb{R}^{m \times n} \sim D$ with nonlinearity σ :

Perform **distillation**: Minimize ℓ_2^2 error between the **function** outputs of full-rank initialization and low rank initialization: Results in empirical gains over

spectral initialization!

 $\min_{U \in \mathbb{R}^{m \times r}, V \in \mathbb{R}^{n \times r}} E_{x \sim N(0,I)}[||\sigma(Wx) - \sigma(UV^{T}x)||_{2}^{2}]$

2. Theory

Is GSpectral Initialization Tractable?

- Suppose $W_{ij} \sim N\left(0, \frac{1}{\sqrt{n}}\right)$ for layer weight $W \in \mathbb{R}^{m \times n}$
- Define $f_W(x) \coloneqq \sigma(Wx)$
- Given $D_W = \{(x, f_W(x)): x \sim N(0, I_{n \times n})\}$, find \widehat{U}, \widehat{V} s.t.

$$\mathbb{E}_{x \sim \mathcal{N}(0, I_{n \times n})} \left[\left\| \sigma(\hat{U}\hat{V}^T x) - f_W(x) \right\|_2^2 \right] < \text{OPT} + \epsilon$$

Is GSpectral Initialization Tractable?

For GSpectral algorithm to be efficient: • Return \widehat{U} , \widehat{V} w/ opt + ϵ error w/ prob $\geq \frac{3}{4}$

•
$$\epsilon = \frac{1}{10}$$

• Runtime poly(n)

Related Work

ReLU Regression (additive square loss, learn $\sigma(w^T x)$)

- Realizable case w/Gaussian x: Gradient Descent succeeds [Soltanolkotabi 2017]
- Agnostic case w/Gaussian x : GD (+ any SQ algorithm) achieving squared loss generalization error $opt + \epsilon$ requires $\exp(\Theta(n^c))$ statistical queries or $n^{\Theta(\left(\frac{1}{\epsilon}\right)^{2b})}$ samples per query for some $b, c \in (0, \frac{1}{2})$. Also the basic problem is SPWN-hard. [Goel et. al. 2019, 2020]
- Agnostic case w/log-concave x: $O(opt) + \epsilon$ has polytime algo [Diakonikolas et. al. 2020]

Our Setting

Combines average-case weights and Gaussian data

• Not realizable, but not arbitrary output distribution

• Common assumptions from theory are practical!

Main Results Teaser

• There is an efficient algorithm for constant rank!

• Algorithm:

1. Exact algorithm in runtime poly(n) when W is given 2. Recover W from samples via m realizable ReLU regressions.

Main Results Teaser

• Suppose width is super-linear in dimension.

- High-dimension + Low Rank
 - Then, gap between GSpectral and Spectral grows with dimension.

Future Research Plans

Resource-Efficient Sequence Modeling

- Sequence modeling / time series abound in the sciences and ML
 - Language modeling
 - Brain recordings
 - •
- Broadly useful simulation/modeling tool
- Limitation of modern deep sequence models: small context!

Resource-Efficient Sequence Modeling

Key Question 1:

Can we employ techniques from low-rank and sparse modeling to achieve **long-range context** neural sequence models in **sublinear space and time**?

Resource-Efficient Sequence Modeling

Key Question 2:

Can we employ techniques from sketching/streaming theory to analyze **long-range context** neural sequence models in **sublinear space and time**?

For reference

Monomials

Population Minimum Eigenvalue $\mathbf{E} = \mathbb{E}[xx^T]$

 $\mathbf{E} = \mathbb{E}[\log|x|\log|x|^T]$

Concentration of Restricted Eigenvalue

$$|\lambda_{RE(k)}(\mathbf{k}) - \lambda_{RE(k)}(\mathbf{k})| < k \cdot ||\mathbf{k} - \mathbf{k}||_{\infty}$$

Log-transformed variables are sub-exponential

- Elementwise ℓ_{∞} error concentrates
 - [Kuchibhotla & Chakrabortty '18]