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Resource-Efficient Machine Learning

A challenge in modern machine learning:

Very large models!
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large nonlinear models via
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Resource-Efficient Machine Learning

Can we mitigate computational/statistical strains of 
large nonlinear models via
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Outline of the Talk

1. Sparse machine learning for monomials

2. Low rank deep learning

3. Future research plans



Sparse Machine Learning
(Attribute-Efficient Learning of Monomials over Highly-Correlated Variables)
Alexandr Andoni, Rishabh Dudeja, Daniel Hsu, Kiran Vodrahalli
ALT 2019



Sparse high-dim 
log-log regression
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Learning Sparse Monomials
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A Simple 
Nonlinear 
Function Class
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Learning Sparse Monomials

Ex:



The Learning Problem

!(#), & !(#)
#'(

)
Given:                               , drawn i.i.d.

Goal: Recover & exactly

Assumption 1: & is a *-sparse monomial function

Assumption 2: !(#)~, 0, Σ



Attribute-Efficient Learning

•Sample efficiency: ! = poly(log ) , +)

•Runtime efficiency:  poly(), +,!) ops

•Goal: achieve both! 



Motivation
!" ∈ ±1

• Monomials ≡ Parity functions

• No attribute-efficient algs!
[Helmbold+ ‘92, Blum’98, Klivans&Servedio’06, 
Kalai+’09, Kocaoglu+’14…]

!" ∈ ℝ
• Sparse sums of monomials

[Andoni+’14] 

For uncorrelated features: 
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() ∈ ±1
• Monomials ≡ Parity functions
• No attribute-efficient algs!

[Helmbold+ ‘92, Blum’98, Klivans&Servedio’06, 
Kalai+’09, Kocaoglu+’14…]

() ∈ ℝ
• Sparse linear regression

[Candes+’04, Donoho+’04, Bickel+’09…]

• Sparse polynomials
[Andoni+’14] 

For uncorrelated features: 
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Outline for This Project

1. Algorithm

2. Analysis

3. Conclusion



1. Algorithm



The Algorithm
Ex: ! "#, … , "& ≔ "( ⋅ "#* ⋅ "++ ⋅ "*,

-(/), ! -(/)
/1#

2

Gaussian Data

log | ⋅ |
log |- / |, log |!(-(/))| /1#

2

Log-transformed Data

Step 1

Step 2
Sparse Regression:

1

0 3 17 44 79 feature(Ex: Basis Pursuit)



Why is our Algorithm Attribute-Efficient?

•Runtime: basis pursuit is efficient

•Key Question: Sample complexity 
• Sparse linear regression analysis on transformed vars? 

E.g.: 

• To prove: sparse linear regression recovery holds 

log $ %&, … , %) ≔ log |%,| + log |%&.| + log |%//| + log |%.0|



2. Analysis



Restricted Eigenvalue Condition [Bickel, Ritov, & Tsybakov ‘09]

! = {$: ||$'||( ≥ ||$'*||(}

Cone restriction

Sufficient to prove exact recovery 
for basis pursuit in 
sparse linear regression!

Restricted Eigenvalue ,-(/)

min4∈6
$7887$
||$||99

> ;

“restricted strong convexity”

< = /

< = 3, 17, 44, 79
/ = 4

Ex: 

Note: ,- / ≥ CDEF 887



Degenerate High Correlation

Consider the 
example:
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0-eigenvectors can be 0-sparse

Sparse recovery conditions false!



Log-Transform affects Data Covariance

log | ⋅ |

& ''( ≽ 0 & log ' log ' ( ≻ 0

Spectral View: “inflating the balloon” 

Destroys correlation structure



Sample Complexity Analysis
Population Transformed Eigenvalue Concentration of Restricted Eigenvalue

|"#$(&) - "#$(&) | < )
with probability ≥ 1 − -

"./0 > ) > 0

Exact Recovery for Basis Pursuit
with high probability

"#$(&) > 0
with high probability

= 4 log 8 log 8 9



Sample Complexity Analysis
Population Transformed Eigenvalue Concentration of Restricted Eigenvalue

|"#$(&) - "#$(&) | < )
with probability ≥ 1 − -

"./0 > ) > 0

Exact Recovery for Basis Pursuit
with high probability

"#$(&) > 0
with high probability

Sample Complexity Bound:

3 = O 67 log 26
1 − < ⋅ log7 2>-

= ? log @ log @ A



3. Conclusion



Recap

•Attribute-efficient algorithm for monomials
•Prior (nonlinear) work: uncorrelated features
•This work: allow highly correlated features
•Works beyond multilinear monomials

•Blessing of nonlinearity log | ⋅ |



Low Rank Deep Learning
Kiran Vodrahalli, Rakesh Shivanna, Mahesh Sathiamoorthy, Sagar Jain, Ed Chi
Google Brain Research Internship (Summer + Fall 2021)



Speeding Up Deep Nets

•Deep neural networks are extremely large today.

•Goal: speed up forward and backward passes

•Example approach: sparse deep networks



Low Rank Deep Models

Replace full-rank layers with low-rank equivalents:

Given weights of layer !:

"# = %#&#'

Then replace the standard parameterization w/RHS.



Prior Work [Khodak et. al. 2021]

•Low-rank methods outperform sparse methods if 
tuned correctly

•Key issues: 
1) Initialization of the low-rank parameters
2) Regularization of weights



Impact of Initialization

•Can achieve ~ 1% additive gain in accuracy by 
choosing better initialization 

•Khodak et al 2021 studies small image classification 
datasets

•Key approach: spectral initialization



Outline for This Project 

1. Low-Rank Initialization Scheme

2. Theory



1. Low-Rank Initialization Scheme



Spectral Initialization

For each layer ! ∈ #$×& ~ ( :

Minimize the Frobenius distance between the full-
rank initialization parameters and the low rank 
parameters:

min,∈-.×/,1∈-2×/ ||! − 567||89



Generalized Spectral Initialization

For each layer ! ∈ #$×& ~ ( with nonlinearity ):

Perform distillation: Minimize ℓ++ error between the 
function outputs of full-rank initialization and low 
rank initialization:

min/∈01×2,4∈05×2 67∼9(;,<) ||)(!?) − )(AB
C?)||++



Generalized Spectral Initialization

For each layer ! ∈ #$×& ~ ( with nonlinearity ):

Perform distillation: Minimize ℓ++ error between the 
function outputs of full-rank initialization and low 
rank initialization:

min/∈01×2,4∈05×2 67∼9(;,<) ||)(!?) − )(AB
C?)||++

Results in empirical gains over 
spectral initialization!



2. Theory



Is GSpectral Initialization Tractable?

• Suppose !"# ~ % 0, () for layer weight ! ∈ +,× )

• Define ./ 0 ≔ 2(!0)
• Given 5/ = 0, ./ 0 : 0 ∼ % 0, 9) × ) , find :;, <= s.t.



Is GSpectral Initialization Tractable?

For GSpectral algorithm to be efficient:
•Return !", $% w/ o'( + * error w/ prob ≥ ,

-

•* = /
/0

•Runtime poly(2)



Related Work
ReLU Regression (additive square loss, learn !(#$%))
• Realizable case w/Gaussian %: Gradient Descent succeeds 

[Soltanolkotabi 2017]

• Agnostic case w/Gaussian % : GD (+ any SQ algorithm) 
achieving squared loss generalization error '() + + requires 

exp Θ(01) statistical queries or 02(
3
4
56
) samples per query 

for some 7, 9 ∈ 0,½ . Also the basic problem is SPWN-hard. 
[Goel et. al. 2019, 2020]

• Agnostic case w/log-concave %: > '() + + has polytime algo 
[Diakonikolas et. al. 2020]



Our Setting

•Combines average-case weights and Gaussian data

•Not realizable, but not arbitrary output distribution

•Common assumptions from theory are practical!



Main Results Teaser

•There is an efficient algorithm for constant rank!

•Algorithm:
1. Exact algorithm in runtime poly(") when $ is given
2. Recover $ from samples via % realizable ReLU 
regressions.



Main Results Teaser

• Suppose width is super-linear in dimension.

• High-dimension + Low Rank 
• Then, gap between GSpectral and Spectral grows with 

dimension.



Future Research Plans



Resource-Efficient Sequence Modeling

•Sequence modeling / time series abound in the 
sciences and ML
•Language modeling
•Brain recordings
•…. 

•Broadly useful simulation/modeling tool
•Limitation of modern deep sequence models: small 

context!



Resource-Efficient Sequence Modeling

Key Question 1: 

Can we employ techniques from low-rank and 
sparse modeling to achieve long-range context 
neural sequence models in sublinear space and 
time?



Resource-Efficient Sequence Modeling

Key Question 2: 

Can we employ techniques from 
sketching/streaming theory to analyze long-range 
context neural sequence models in sublinear space 
and time?
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Monomials



Population Minimum Eigenvalue

• Hermite expansion of log | ⋅ |:

• ' ≥ 1: *+,+ ~
√/
0
⋅ 1
, ⁄3 4

• ⋅ (+,) off-diagonals decay fast!

• Apply 789: to Hermite formula:

• Apply Gershgorin Circle Theorem:

= *<+1=>= +@
,A1

B

*+,+ ⋅ (+,) 789: ≥@
,A1

B

*+,+ 789:
(+,)

789: ⋅ (+,) ≥ 1 − D − 1 E+,

(for large enough ')

= F GGH
= F log G log G H



Concentration of Restricted Eigenvalue

• |"#$(&) - "#$(&) | < ) ⋅ || − ||,

•Log-transformed variables are sub-exponential

•Elementwise ℓ, error concentrates 
• [Kuchibhotla & Chakrabortty ‘18]

= / log 3 log 3 4


