The Platform Design Problem

Christos Papadimitriou, Kiran Vodrahalli, Mihalis Yannakakis
Columbia University
WINE 2021
December 15, 2021



Economics of the Online Firm
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* User data feeds revenue * Online services bring value
 Better demand segmentation  Convenience
 Ad/recommendation revenue  Knowledge

e Better models => better services
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Problem Definition



Platform Design

* Key ldea: Google builds various

Proble.m- . apps (Maps, Search, Social Network,
Model the revenue-maximization problem of etc.) and profits based on usage of
today’s online firms (e.g. Google, FB, etc.) these apps.

and understand computational tractability.

* The usage of apps modifies the
transitions of the Markov Chain of
the user’s life

Bi-Level MDP Optimization Model
Agent: participates in Life MDP

Designer: tweaks the Life MDP by

building platforms. . .
* Assume the Designer has linear
Goal: Designer wants to indirectly

optimize its reward via Agent’s re.wa.rds .OVEI“ the Steady .State
optimal behavior! (Find Stackelberg) distribution of the resulting Markov
chain (agent policy + Life MDP)




The Stackelberg Game

* Designer moves first:

* Adds platforms which, if adopted, modify transitions to an existing Markov
Chain

* Agent moves second:
* Receives IVIDP from Designer, plays optimal behavior

* Example of bi-level MDP optimization

* What is the computational complexity of solving for equilibrium?



Formal Problem Statement

* An agent lives in an irreducible Markov chain with A = [n] states.
* The designer chooses S € A states to add platforms to.

* The agent may adopt or not adopt the platform at each state:

* If adopt, the transitions change. Otherwise they do not.

e Assume the chain remains irreducible.



Formal Problem Statement
* Assign a utility rate for the agent (¢;) and the designer (d;) ati € [n].

* The agent solves the resulting Markov Decision Process.
* Resulting steady-state probabilities are given by .

* The designer optimizes over §:

pI‘Oﬁt(S) = Zdz y WZ(S) — ZCOStz’

€S €5



General Case



Picture of the General Case
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At a cost, the firm can add
an opt-in action to
platforms they create (ex:
Google Maps).



Picture of the General Case
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Computational Tractability |: General Case

* It is strongly NP-hard to decide whether the Designer can obtain
positive profit — and therefore hard to approximate.

e Reduction from SET COVER

e Designer builds platforms which each solve subset of Agent’s problems.
* Most cost-effective covering set is NP hard.

* In economic terms, the reduction exploits the complexity of
“complementary goods.”

e Ex: Brick-and-mortar retail ads help the Agent discover the store, Maps helps
the Agent get to the store.



Tractable “Flower” Case



A More Tractable Case: The Flower

Life MDP
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A More Tractable Case: The Flower

* Problem can be solved by an FPTAS

* Why tractable?

* Substitutes rather than complements
» Allocate time spent in each platform

e Simpler low-level behavior (greedy agent)

 Admits a DP upon discretization (knapsack DP)



Agent Behavior



The Agent’s Greedy Algorithm

* Solving for the steady state distribution yields a quasi-concave
combinatorial optimization problem:

Lemma 1. The agent’s objective for an optimal policy defined in Section[3 can be re-written as the following
optimization in the special case of the flower MDP (Deﬁmtion@'

A+Z]€S J ( )

argmax (1)
SC[n] B + ZJES J
where .
A= Y cllfc B =1+ s A= P Doz = b S > 0;
Z Z 1 —gq l—gi-yi 1-gq

¢( ) cﬁ)latform + % (Cglatform . C’lL_ifc) if 2 > 0
1) 1= ¢ :

We therefore define ‘
A+ jes200)
B + Zjes Zj

utility A8 (S) :=
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The Agent’s Greedy Algorithm

ALGORITHM 1: GREEDY ALGORITHM

Input: Parameters of the Agent’s problem: transition probabilities and utility coefficients in and out of the
platform.
Output: An optimal subset S C [n] of states where the Agent accepts the platform.
Initialize S := {}
for k € [n]| sorted’| from largest to smallest ¢(k) do
if utility*8°"*(S) < ¢(k) then
| Update S := S U {k}
else
| return S
end

end
return S

Sort states by potential function and add until utility = potential



Designer’s Algorithm



Recall: Designer’s Objective
profit(S):= Td)(m)s) - 3 feost)
i€S i€S

Set of states to
build platforms

Designer’s ) Designer’s one-time
Agent’s steady .
steady-state e costs for building
state probabilities
reward rates each platform



Restrictions

* Expanding the profit function given agent behavior:

profit(.S) :=

Py (S) D(S)

* Define maxd; =: K
l

* Maximum profit is nK

* Assume z; are poly(n) and discretized with gap 6 and costs are K *
poly(n)



Target Algorithm

* Deciding whether it is possible to attain a certain profit is NP
complete

e Reduction from PARTITION

* Thus, our goal: A (1 — €) approximate algorithm in polynomial time.



The Desigher’s Dynamic Program
» Key Idea: Use a (poly-sized) hash table with rounded rewards

* Difficulty comes from profit scale and non-discretized z;

 Hash function:

hash(S) := (25521, [ 54521, D(S)/5)

 Similar to standard Knapsack FPTAS (lbarra & Kim, 1975)




Extensions



Multiple Agents

* Replace designer objective with summation over agents:

d;
j€Agent, (S) “J T 1— Qz —Yi
profit(.S) := 3 L E. cost;
( ) Z B +Zl€Agent (S) Zil Jze;g

* An exact polytime DP exists if #agents is constant.
* Exponential in #agents
* Also require potentials ¢; to be discretized by &' with poly size.

* No FPTAS for 2 agents if ¢; not polynomial size.



Designer Competition
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Multiple Platforms (Flower Setting)

* What if other competing designers have already built platforms?
* Each platform affects only one state

* At most one for each designer per state
* How does an agent behave?

* How should a designer optimally place platforms?



Multiple Platforms (Flower Setting)

* Agent’s algorithm is still greedy — but different potential function

* For platforms j, j' at the same state, define:

. zj/qS ! —Zj¢ '
P(],J,) _ (ZJ.’)_Zj (7)

J

* A “swap” potential: At state s, remove j and replace it with j'.



Multiple Platforms (Flower Setting)

* Is there an efficient designer algorithm?

* The multi-agent algorithm also (essentially) works in the multi-
platform setting
e Same discretization assumptions (potentials, denominator)
e Exact algorithm
* Polynomial time when #agents is constant

e Slight difference from old algorithm:

* Modify the hash function: numerator and denominator of Y
instead



Summary



Recap

* Platform design: model economic activity of online firms

* General case of platform design is strongly NP complete.

* Tractable special case: the flower MDP

* Greedy agent algorithm

* Knapsack-style DP FPTAS for designer w/unbounded potentials

* Under polynomial, discretized potentials, exact DP for k agents
(poly(n)- 2)

* Similar for multiple platforms

* Many open directions!



Future Work



Future Work

* Designer vs. designer
* Complexity of pure Nash
* Repeated game settings

* Privacy/fairness questions for agent
* Other classes of tractable MDPs?
* Results for generic classes of agent behavior?

* Many questions are problems of formulation



