The Optimization Landscape of Tensor Decompositions¹

Presentation by Kiran Vodrahalli for ELE 538B May 1, 2017

¹Based on the work of Rong Ge and Tengyu Ma

Tensors: A brief definition

- Tensors are arrays indexed by multiple indices
- Each index represents a factor of interest
- Ex: Consider Netflix data over time
 - \circ viewer
 - o movie
 - time

Tensor Decomposition

- Methods like gradient ascent and tensor power method work empirically well

Applications of Tensor Decomposition

- Latent variable models
 - HMMs
 - Gaussian mixture models
 - Topic modeling
 - ICA
 - and more...
- Symmetric Orthogonal Tensor Decomposition suffices for these models

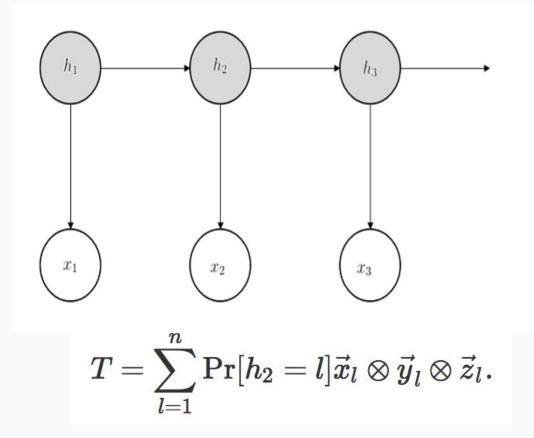
Hidden Markov Model

Ex: Trigrams in language modeling

Condition on middle topic l

x, y, z: conditional probabilities given topic I for each trigram position

$$T_{i,j,k}=\Pr[x_1=i,x_2=j,x_3=k]$$



Learning decompositions in the general case

- Sometimes, a true decomposition does not even exist
- Tensor problems tend to be NP-hard
- Motivates considering "average case" situations
 - \circ N \leq d and orthogonal components possible
 - What about N >> d and non-orthogonal?

Provably learning overcomplete decompositions

$$\begin{array}{ll} \max & f(x) = \sum_{i,j,k,l \in [d]^4} T_{i,j,k,l} x_i x_j x_k x_l = \sum_{i=1}^n \langle a_i, x \rangle^4 \\ s.t. & \|x\| = 1. \end{array} \qquad (\text{multi-linear form}) \end{array}$$

m

under constraints: $\circ a_i \in \mathbb{R}^d$ drawn i.i.d. from $\mathcal{N}(0,I)$ $\circ n \gg d$

Main Theorem

Theorem 1.1. Let $\varepsilon, \zeta \in (0, 1/3)$ be two arbitrary constants and d be sufficiently large. Suppose $d^{1+\varepsilon} < n < d^{2-\varepsilon}$. Then, with high probability over the randomness of a_i 's, we have that in the superlevel set

$$L = \left\{ x \in S^{d-1} : f(x) \ge 3(1+\zeta)n \right\},$$
(1.2)

there are exactly 2n local maxima with function values $(1 \pm o(1))d^2$, each of which is close to one $of \pm \frac{1}{\sqrt{d}}a_1, \ldots, \pm \frac{1}{\sqrt{d}}a_n$.

- Initialization must be slightly better than random (function value 3n)
- Gradient ascent / power method then works
 "Peel off eigenvectors" (c.f. SVD)

Proof Strategy

• Kac-Rice formula:

- Assign probability to points on unit sphere of being local optima
- Integrate to get expected # of optima
- Need to analyze joint distribution of gradient and Hessian for local optimality
- Intractable closed form
- Estimate # local optima for:
 - "Local set": points near approximate optima
 - "Global set": everything else

Local-Global Set Decomposition

$$L_1:=\left\{x\in S^{d-1}:\sum_{i=1}^n\langle a_i,x
angle^4\geq 3n+\gamma\sqrt{nd}
ight\}$$

$$L_1 = (L_1 \cap L_2) \cup L_2^c,$$

where $L_2 := \{x \in S^{d-1} : \forall i, \|P_x a_i\|^2 \ge (1-\delta)d, \text{ and } |\langle a_i, x \rangle|^2 \le \delta d\}$

 P_x is (I - xx^T), the orthogonal projection operator.

Local Analysis (L2^C) uses RIP

- Local set is where both restricted isometry and approximate optimality hold
 - Intuitively, Gaussian components are "almost orthogonal" due to rotational invariance ⇒ RIP
 - Thus x has high correlation with only few components
- 2n local optima (+/- components)
- In high-correlation regions, objective is strongly convex with unique optimum

Global Analysis (L1 \cap L2)

- Number of local optima is an integer r.v.
- If expected #optima << 1, Markov's inequality
 ⇒ # optima is exactly 0 in this region w.h.p.
- Use random matrix theory on Kac-Rice integral to show required expectation result
 - analyze gradient and Hessian
 - Crux is determinant of Hessian analysis

Citations

- On the Optimization Landscape of Tensor Decompositions (Ge and Ma 2016)
- Tensor Decompositions for Learning Latent Variable Models (Anandkumar, Ge, Hsu, Kakade, Telgarsky)
- Tensor Methods in Machine Learning (Rong Ge, <u>http://www.offconvex.org/2015/12/17/tensor-decomposition</u> <u>s/</u>)