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Tensors: A brief definition

● Tensors are arrays indexed by multiple indices

● Each index represents a factor of interest

● Ex: Consider Netflix data over time
○ viewer
○ movie
○ time 



Tensor Decomposition

● Goal: Find decomposition

● Optimization as iterative procedure
○ Find each component one-by-one

● Methods like gradient ascent and tensor 
power method work empirically well



Applications of Tensor Decomposition

● Latent variable models 
○ HMMs
○ Gaussian mixture models
○ Topic modeling
○ ICA
○ and more…

● Symmetric Orthogonal Tensor Decomposition 
suffices for these models



Hidden Markov Model

Ex: Trigrams in 
language modeling

Condition on 
middle topic l

x, y, z: conditional 
probabilities given 
topic l for each 
trigram position



Learning decompositions in the general case

● Sometimes, a true decomposition does not even 
exist

● Tensor problems tend to be NP-hard

● Motivates considering “average case” situations
○ N ≤ d and orthogonal components possible
○ What about N >> d and non-orthogonal?



Provably learning overcomplete decompositions 

under constraints: 
○                drawn i.i.d. from 
○

(multi-linear form)



Main Theorem

● Initialization must be slightly better than 
random (function value 3n)

● Gradient ascent / power method then works
○ “Peel off eigenvectors” (c.f. SVD)



Proof Strategy

● Kac-Rice formula:
○ Assign probability to points on unit sphere of being 

local optima
○ Integrate to get expected # of optima
○ Need to analyze joint distribution of gradient and 

Hessian for local optimality
● Intractable closed form
● Estimate # local optima for:

○ “Local set”: points near approximate optima
○ “Global set”: everything else



Local-Global Set Decomposition

Px is (I - xxT), the orthogonal projection operator.



Local Analysis (L2C) uses RIP

● Local set is where both restricted isometry and 
approximate optimality hold
○ Intuitively, Gaussian components are “almost 

orthogonal” due to rotational invariance ⇒ RIP
○ Thus x has high correlation with only few components

● 2n local optima (+/- components)

● In high-correlation regions, objective is strongly 
convex with unique optimum



Global Analysis  (L1 ∩ L2)  

● Number of local optima is an integer r.v.

● If expected #optima << 1, Markov’s inequality 
⇒ # optima is exactly 0 in this region w.h.p.

● Use random matrix theory on Kac-Rice integral 
to show required expectation result
○ analyze gradient and Hessian
○ Crux is determinant of Hessian analysis



Citations

● On the Optimization Landscape of Tensor Decompositions 
(Ge and Ma 2016)

● Tensor Decompositions for Learning Latent Variable 
Models (Anandkumar, Ge, Hsu, Kakade, Telgarsky)

● Tensor Methods in Machine Learning (Rong Ge, 
http://www.offconvex.org/2015/12/17/tensor-decomposition
s/)

http://www.offconvex.org/2015/12/17/tensor-decompositions/
http://www.offconvex.org/2015/12/17/tensor-decompositions/
http://www.offconvex.org/2015/12/17/tensor-decompositions/

