Mapping Between Natural Movie fMRI Responses and Word-Sequence Representations**

Kiran Vodrahalli*, Po-Hsuan Chen*, Yingyu Liang*, Janice Chen*, Esther Yong †, Christopher Honey †, Peter J. Ramadge*, Kenneth A. Norman*, Sanjeev Arora* NIPS MLINI 2016 December 9, 2016 ** work supported by Intel Labs (www.brainiak.org) * = Princeton, † = U. Toronto

fMRI: Sensing Brain Signal

100 billion neurons in the brain

fMRI measures hemodynamic response at $\sim 10^5$ different 3mm x 3mm x 3mm voxels

Each voxel represents an average of the activity of the $\sim 10^6$ neurons it contains

Goal: detect semantic meaning in this signal.

[Mitchell et al '08] predicts fMRI responses induced by **pictures of concrete nouns**.

[Naselaris et al '09] predicts fMRI responses induced by **images of scenes**.

[Pereira et al '11] uses the same dataset as Mitchell '08, but focuses on **generating words** related to the concrete nouns.

[Naselaris et al '11] tries to **reconstruct movie images** from fMRI signals measured while subjects watched movies.

[Wehbe et al '14] has subjects **read a chapter of Harry Potter** and predicts fMRI responses for held-out time points.

[Huth et al '16] reconstructs fMRI responses to **auditory stories**.

[Pereira et al '16] decodes fMRI responses to word clouds and short sentences.

Goal 1: Decode fMRI Response Semantics

Goal 1: Match fMRI responses to annotations (Views: fMRI signal, text annotations)

- The Shared Response Model (SRM, Chen et al. 2015) helps for decoding text!
- Weighted average word vectors → better semantic context vectors (ICLR 2017 submission, Arora et al)
- Orthogonal maps decode fMRI \rightarrow text better than ridge regression

Goal 2: Leverage Multiple Subject Views to Extract Better Semantics

Shared Response Model (SRM, [Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge '15])

50 chunks from 1976 TRs

Results - Top-20% Classification and Average Rank

Figure 2: Best Bidirectional Accuracy Scores for Each Brain Region of Interest for both Scene Classification and Ranking (std. err. over different average subsets < 0.01)

Comparison on the Classification Task	$fMRI \to Text$	$Text \to fMRI$
20-dim SRM / Avg	1.57 ± 0.10	1.00 ± 0.03
Weighted / Unweighted Semantic Vectors	1.17 ± 0.04	1.06 ± 0.03
Temporal Zero Mean / No Zero Mean	1.09 ± 0.04	1.57 ± 0.11
Procrustes / Ridge	1.42 ± 0.09	0.85 ± 0.06

Table 1: Average Improvement Ratio for Various Comparisons

Results - Performance of All Variants on DMN Region

Figure 3: DMN Bidirectional Accuracy Scores for Scene Classification and Ranking. The acronyms stand for combinations of methods, with the following key: S/A = SRM/Average, W/U = Weighting/No Weighted, T/N = Temporal Zero Mean/No Temporal Zero Mean, P/R = Procrustes/Ridge (std. err. over different average subsets < 0.01)