Temporally Dependent Mappings Between fMRI Responses and Natural Language Descriptions of Natural Stimuli

Kiran Vodrahalli*, Po-Hsuan Chen*, Yingyu Liang*, Christopher Baldassano*, Janice Chen⁺, Esther Yong ⁺, Christopher Honey⁺, Peter J. Ramadge*, Kenneth A. Norman*, Sanjeev Arora*

COS MSE Master's Thesis Presentation May 10, 2017

* = Princeton, ◆ = Johns Hopkins, † = U. Toronto

fMRI: Sensing Brain Signal

Goal: detect semantic meaning in fMRI signal.

100 billion neurons in the brain

fMRI measures hemodynamic response at ~10⁵ different 3mm x 3mm x 3mm voxels

Each voxel represents an average of the activity of the $\sim 10^6$ neurons it contains

[Mitchell et al '08] predicts fMRI responses induced by **pictures of concrete nouns**.

[Naselaris et al '09] predicts fMRI responses induced by **images of scenes**.

[Pereira et al '11] uses the same dataset as Mitchell '08, but focuses on **generating words** related to the concrete nouns.

[Naselaris et al '11] tries to **reconstruct movie images** from fMRI signals measured while subjects watched movies.

[Wehbe et al '14] has subjects **read a chapter of Harry Potter** and predicts fMRI responses for held-out time points.

[Huth et al '16] reconstructs fMRI responses to **auditory stories**.

[Pereira et al '16] decodes fMRI responses to word clouds and short sentences.

Main Goal: Decode fMRI Response Semantics

Matching fMRI responses to annotations (Views: fMRI signal, text annotations)

- The Shared Response Model (SRM, Chen et al. 2015) helps for decoding text!
- Weighted average word vectors → better semantic context vectors (ICLR 2017 paper, Arora et al)
- Using previous time points helps a lot for mapping fMRI \rightarrow text, but hurts text \rightarrow fMRI

Brain Regions (ROIs) Studied

- Default Mode Network (DMN) standard area in literature
 - known to relate to narrative processing
 - DMN-A, -B (2000 voxels)
- Ventral/Dorsal Language (2000 voxels)
- Whole Brain (26000 voxels)
 voxels with high inter-subject correlation
- Occipital Lobe (6000 voxels)

Leveraging Multiple Subject Views to Extract Better Semantics

Shared Response Model (SRM, [Chen, Chen, Yeshurun, Hasson, Haxby, Ramadge '15])

Fig. 3. Visualization of Semantic Annotation Vector Weightings: We display an example sentence from the Sherlock annotations, where we have colored important words red, and unimportant words blue. Brighter red means more important, and darker blue means less important.

Concatenating Previous Timepoints

Fig. 4. Visualizing Concatenation: We visualize what the single timestep case looks like compared to a case where we use the previous two timesteps in our featurization as well. The latter case results in a more complicated model, since one of the dimensions of our linear map triples in size.

Linear Maps Between fMRI and Text

Basic Model:

$$WX = Y$$
 , $W \in \mathbb{R}^{m \times n}$

X represents the fMRI data matrix (n x T) Y represents the semantic annotation data matrix (m x T)

Previous Time Step Model:

$$\hat{W}\hat{X} = Y \quad , \quad \hat{W} \in \mathbb{R}^{m \times n * (k+1)} \\ \hat{X} \in \mathbb{R}^{n * (k+1) \times T}$$

k is the number of previous timesteps used

- Procrustes (W^TW = I)
- Ridge Regression

Learning the Map:

25 test chunks from 1976 TRs

Results: Multiplicative Improvements with our Methods

$fMRI \rightarrow Text$	Maximum	Average
Previous Timesteps vs. None	5.3×	1.8×
Procrustes vs. Ridge	2.8×	1.3×
SRM/SRM-ICA vs. PCA	1.8×	$1.3 \times$
Weighted-SIF vs. Unweighted	1.6×	$1.2 \times$
$\mathrm{Text} \to \mathrm{fMRI}$	Maximum	Average
Previous Timesteps vs. None	2.5×	$0.5 \times$
Procrustes vs. Ridge	3.0 imes	$0.8 \times$
SRM/SRM-ICA vs. PCA	2.3×	$1.2 \times$
Watehted CIE and Hannatahted	1 0	

Mapping Between fMRI Responses and Semantic Representations

Table 1. Table of Improvement Ratios for Various Algorithmic Parameters: In this table we give the maximum and average improvement ratios for a specific algorithmic technique over another, including usage of previous time steps, SRM/SRM-ICA versus PCA, SIF-weighted annotation embeddings versus unweighted annotation embeddings, and Procrustes versus ridge regression for both fMRI \rightarrow Text and Text \rightarrow fMRI. When we use previous timesteps, we consider the results for using 5-8 previous time steps. These numbers are all for the scene classification task. Note that the values from the maximum columns can be seen visually in Figures 6 and 7 respectively.

Results: Top-4% Classification and Average Rank

Results: Comparisons for fMRI \rightarrow Text (4% Chance)

fMRI to Text (4% chance)

Results: Comparisons for Text \rightarrow fMRI (4% Chance)

Text to fMRI (4% chance)

Performance on the Green Eyes Dataset (Yeshurun et al, 2017)

fMRI->Text Scene Classification	Maximum	Average
SRM vs. Average	4.547x	1.909348x
Weighted vs. Unweighted	2.182211x	1.17182x
Text->fMRI Scene Classification	Maximum	Average
SRM vs. Average	2.986x	1.431645x
Weighted vs. Unweighted	3.386167x	1.35073x

(Results from Viola Mocz)

Decay weights and
$$\lambda = [\lambda_1, \cdots, \lambda_n]$$
, $Z_i = \sum_{j^*=t}^{t-k} e^{(t-j^*)\lambda_i}$. Normalization:

$$C_{k} = \begin{bmatrix} 1/Z_{1} & 0 & \cdots & 0 & e^{\lambda_{1}}/Z_{1} & 0 & \cdots & 0 & \cdots & e^{k\lambda_{1}}/Z_{1} & 0 & \cdots & 0 \\ 0 & 1/Z_{2} & 0 & 0 & e^{\lambda_{2}}/Z_{2} & 0 & \cdots & 0 & e^{k\lambda_{2}}/Z_{2} & 0 \\ \vdots & \ddots & \vdots & \ddots & & \vdots & \ddots & \\ 0 & & 1/Z_{n} & 0 & & e^{\lambda_{n}}/Z_{n} & \cdots & 0 & & e^{k\lambda_{n}}/Z_{n} \end{bmatrix}$$

Linear model: $WC_k \hat{X} = Y$ k = prev. time steps n = fMRI dimensionsk = prev. time steps

where $W \in \mathbb{R}^{m \times n}, C_k \in \mathbb{R}^{n \times n * (k+1)}, \hat{X} \in \mathbb{R}^{n * (k+1) \times T}$, and $Y \in \mathbb{R}^{m \times T}$

Comparison of Decay Weights, DMN-A Region fMRI \rightarrow Text (4% Chance)

Comparison of Decay Weights, DMN-A Region Text \rightarrow fMRI (4% Chance)

Ongoing and Future Work

- Applying event segmentation to define scenes in classification and ranking tasks
- Understanding gap between fMRI \rightarrow Text and Text \rightarrow fMRI
- Finer-grained annotation embeddings
- More datasets
- Genuine scene description decoding