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Overview

● What is NLP? 
– Natural Language Processing 

– We try to extract meaning from text: sentiment, 
word sense, semantic similarity, etc.

● How does Deep Learning relate? 
– NLP typically has sequential learning tasks 

● What tasks are popular?
– Predict next word given context

– Word similarity, word disambiguation

– Analogy / Question answering

  



  

Papers Timeline

● Bengio (2003)
● Hinton (2009)
● Mikolov (2010, 2013, 2013, 2014)

– RNN → word vector → phrase vector → 
paragraph vector

● Quoc Le (2014, 2014, 2014)
● Interesting to see the transition of ideas and 

approaches (note: Socher 2010 – 2014 papers)
● We will go through the main ideas first and 

assess specific methods and results in more 
detail later



  

Standard NLP Techniques

● Bag-of-Words
● Word-Context Matrices

– LSA

– Others... (construct matrix, smooth, dimension 
reduction)

● Topic modeling 
– Latent Dirichlet Allocation

● Statistics-based

● N-grams



  

Some common metrics in NLP
● Perplexity (PPL): Exponential of average negative log likelihood 

– geometric average of the inverse of probability of seeing a word 
given the previous n words

– 2 to the power of cross entropy of your language model with the 

test data 

–     
● BLEU score: measures how many words overlap in a given translation 

compared to a reference, with higher scores given to sequential words

– Values closer to 1 are more similar (would like human and machine 
translation to be very close)

● Word Error Rate (WER): derived from Levenstein distance

– WER = (S + D + I)/ (S + D + C)

– S = substitutions, D = deletions, I = insertions, C = corrections 
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Statistical Model of Language

● Conditional probability of one word given all the 
previous ones

●



  

Issues for Current Methods

● Too slow
● Stopped improving when fed increasingly larger 

amounts of data
● Very simple and naïve; works surprisingly well 

but not well enough
● Various methods don't take into account 

semantics, word-order, long-range context
● A lot of parsing required and/or hand-built 

models
● Need to generalize!



  

N-grams

● Consider combinations of successive words of 
smaller size and predict see what comes next 
for all of those. 

● Smoothing can be done for new combinations 
(which do not occur in training set)

● Bengio: we can improve upon this!
– They don't typically look at contexts > 3 words

– Words can be similar: n-grams don't use this to 
generalize when we should be!



  

Word Vectors

● Concept will show up in a lot of the papers
● The idea is we represent a word by a dense 

vector in semantic space
● Other vectors close by should be semantically 

similar
● Several ways of generating them; the papers 

we will look at generate them with Neural Net 
procedures



  

Neural Probabilistic Language 
Model (Bengio 2003)

● Fight the curse of dimensionality with 
continuous word vectors and probability 
distributions

● Feedforward net that both learns word vector 
representation and a statistical language model 
simultaneously 

● Generalization: “similar” words have similar feature 
vectors; probability function is smooth function of these 
values → small change in features induces small change 
in probability, and we distribute the probability mass 
evenly to a combinatorial number of similar neighboring 
sentences every time we see a sentence. 



  

Bengio's Neural Net Architecture



  

Bengio Network Performance 

● Has lower perplexity than smoothed tri-gram 
models (weighted sum of probabilities of 
unigram, bigram, up to trigram) on Brown 
corpus

● Perplexity of best neural net approach: 252
– (100 hidden units; look back 4 words; 30 word 

features, no connections between word layer 
and output layer; output probability averaged 
with trigram output probability)

● Perplexity of best tri-gram only approach: 312 



  

RNN-based Language Model 
(Mikolov 2010)

● RNN-LM: 50% reduction on perplexity possible 
over n-gram techniques

● Feeding off of Bengio's work, which used 
feedforward net → Now we try RNN! More 
general, not as dependent on parsing, 
morphology, etc. Learn from the data directly.

● Why use RNN? 
– Language data is sequential; RNN is good 

approach for sequential data (no required 
fixed input size) → can unrestrict context



  

Simple RNN Model



  

RNN Model Description

● Input: x(t): formed by concatenating vector w (current 
word) with the context s(t – 1)

● Hidden context layer activation: sigmoid 

● Output y(t): softmax layer to output probability 
distribution (we are predicting probability of each word 
being the next word)

● error(t) = desired(t) – y(t); where desired(t) is 1-of-V 
encoding for the correct next word 

● Word input uses 1-of-V encoding

● Context layer can be initialized with small weights

● Use trunctated backprop through time (BPTT) and 
SGD to train 



  

More details on RNN model

● Rare word tokens: merge words that occur less 
often than some threshold into a rare-word 
token

– prob(rare word) = y
rare

(t)/ (number of rare words)

–  y
rare

(t) is the rare-word token

● The dynamic model: network should continue 
training even during testing phase, since the 
point of the model is to update the context 



  

Performance of RNN vs. KN5 on 
WSJ dataset



  

More data = larger improvement



  

More RNN comparisons

● Previous approaches were not state-of-the-
art,we display improvement on state-of-the-art 
AMI system for speech transcription in 
meetings on NIST RT05 dataset

● Training data: 115 hours of meeting speech 
from many training corpora

●  



  

Mikolov 2013 Summary

● In 2013, word2vec (Google) made big news 
with word vector representations that were able 
to represent vector compositionality 

● vec(Paris) – vec(France) + vec(Italy) = vec(Rome)
● Trained relatively quickly, NOT using neural net 

nonlinear complexity
● “less than a day to learn high quality word vectors 

from 1.6 billion word Google News corpus dataset”
● (note: this corpus internal to Google) 



  

Efficient Estimation of Word Representations 
in Vector Space (Mikolov 2013)

● Trying to maximize accuracy of vector 
operations by developing new model 
architectures that preserve linear regularities 
among words; minimize complexity

● Approach: continuous word vectors learned 
using simple model; n-gram NNLM (Bengio) 
trained on top of these distributed 
representations

● Extension of previous two papers (Bengio; 
Mikolov(2010) )
 



  

Training Complexity

● We are concerned with making the complexity as simple 
as possible to allow training on larger datasets in smaller 
amounts of time. 

● Definition: O = E*T*Q, where E = # of training epochs, T = 
# of words in training set, Q = model-specific factor (i.e. in 
a neural net, counting number of size of connection 
matrices)

● N: # previous words, D: # dims in representation, H: 
hidden layer size; V: vocab size

● Feedforward NNLM: Q = N*D + N*D*H + H*log
2
V

● Recurrent NNLM (RNNLM): Q = H*H + H*log
2
V

– Log
2
V comes from using hierarchical softmax



  

●

● Want to learn probability distribution on words
● Speed up calculations by building a 

conditioning tree
● Tree is Huffman code: high-frequency words 

are assigned small codes (near the top of the 
tree)

● Improves updates from V to log
2
V

Hierarchical Softmax
ez j

∑
i=1

K

ez k



  

New Log-linear models 
● CBOW (Continuous Bag of Words)

– Context predicts word

– All words get projected to same position (averaged) → lose 
order of words info

– Q = N*D + D*log
2
V

● Skip-gram (we will go into more detail later)

– Word predicts context, a range before and after the current word

– Less weight given to more distant words

– Log-linear classifier with continuous projection layer

– C: maximum distance between words 

– Q = C*( D + D*log
2
V)

● avoid the complexity of neural nets to train good word vectors; use log-linear 
optimization (achieve global maximum on max log probability objective)

● Can take advantage of more data due to speed up



  

CBOW Diagram



  

Skip-gram diagram



  

Results

● Vector algebra result: possible to find answers 
to analogy questions like “What is the word that 
is similar to small in the same sense as biggest  
is to big?” (vec(“biggest”) - vec(“big”) + 
vec(“small”) = ?)

● The task: test set containing 5 types of 
semantic questions; 9 types of syntactic 
questions

● Summarized in the following table:



  

Mikolov test questions



  

Performance on Syntactic-
Semantic Questions



  

Summary comparison of architectures

● Word vectors from RNN perform well on 
syntactic questions; NNLM vectors perform 
better than RNN (RNNLM has a non-linear 
layer directly connected to word vectors; NNLM 
has interfering projection layer)

● CBOW > NNLM on synactic, bit better on semantic

● Skip-gram ~ CBOW (a bit worse) on syntactic
● Skip-gram >>> everything else on semantic
● This is all for training done with parallel training



  

Comparison to other approaches 
(1 CPU only)



  

Varying epochs, training set size



  

Microsoft Sentence Completion

● 1040 sentences; one word missing / sentence, 
goal is to select the word that is most coherent 
with the rest of the sentence

●



  

Skip-gram Learned Relationships



  

Versatility of vectors

● Word vector representation also allows solving 
tasks like finding the word that doesn't belong in 
the list (i.e. (“apple”, “orange”, “banana”, 
“airplane”) )

● Compute average vector of words, find the 
most distant one → this is out of the list. 

● Good word vectors could be useful in many 
NLP applications: sentiment analysis, 
paraphrase detection 



  

DistBelief Training

● They claim should be possible to train CBOW 
and Skip-gram models on corpora with ~ 10^12 
words, orders of magnitude larger than previous 
results (log complexity of vocabulary size)

●



  

Focusing on Skip-gram

● Skip-gram did much better than everything else 
on the semantic questions; this is interesting. 

● We investigate further improvements (Mikolov 
2013, part 2)

● Subsampling gives more speedup
● So does negative sampling (used over 

hierarchical softmax)



  

Recall: Skip-gram Objective



  

Basic Skip-gram Formulation

● (Again, we're maximizing average log 
probability over the set of context words we 
predict with the current word)

● C is the size of the training context
– Larger c → more accuracy, more time

● v_w and v_w' are input and output 
representations of w, W is # of words

● Use softmax function to define probability; this 
formulation is not efficient → hierarchical 
softmax



  

OR: Negative Sampling

● Another approach to learning good vector 
representations to hierarchical softmax

● Based off of Noise Constrastive Estimation 
(NCE): a good model should differentiate data 
from noise via logistic regression

● Simplify NCE →  Negative sampling 
●  



  

Explanation of NEG objective

● For each (word, context) example in the corpus we 
take k additional samples of (word, context) pairs NOT 
in the corpus (by generating random pairs according to 
some distribution Pn(w))

● We want the probability that these are valid to be very 
low

● These are the “negative samples”; k ~ 5 – 20 for larger 
data sets, ~ 2 – 5 for small 

●



  

Subsampling frequent words

● Extremely frequent words provide less 
information value than rarer words

● Each word w_i in training set is discarded with 
probability; t (threshold) ~ 10^-5: aggressively 
subsamples while preserving frequency ranking

● Accelerates learning; does well in practice

f is frequency of word; P(w_i): prob to discard 
●



  

Results on analogical reasoning 
(previous paper's task)

● Recall the task: “Germany”: “Berlin” :: “France”:?
● Approach to solve: find x s.t. vec(x) is closest to 

vec(“Berlin”) - vec(“Germany”) + vec(“France”)
● V = 692K
● Standard sigmoidal RNNs (highly non-linear) 

improve upon this task; skip-gram is highly 
linear

● Sigmoidal RNNs → preference for linear 
structure? Skip-gram may be a shortcut



  

Performance on task



  

What do the vectors look like?



  

Applying Approach to Phrase 
vectors

●  “phrase” → meaning can't be found by composition; words 
that appear frequently together; infrequently elsewhere 

● Ex: New York Times becomes a single token

● Generate many “reasonable phrases” using 
unigram/bigram frequencies with a discount term; (don't 
just use all n-grams)

● Use Skip-gram for analogical reasoning task for phrases (3128 
examples)

●



  

Examples of analogical reasoning 
task for phrases



  

Additive Compositionality

● Can meaningfully combine vectors with term-
wise addition

● Examples:
●



  

Additive Compositionality

● Explanation: word vectors in linear relationship 
with softmax nonlinearity

● Vectors represent distribution of context in 
which word appears

● These values are logarithmically related to 
probabilities, so sums correspond to products; 
i.e. we are ANDing together the two words in 
the sum.  

● Sum of word vecs ~ product of context 
distributions 



  

Nearest Neighbors of Infrequent 
Words



  

Paragraph Vector!

● Quoc Le and Mikolov (2014)

● Input is often required to be fixed-length for NNs

● Bag-of-words lose ordering of words and ignore semantics

● Paragraph Vector is unsupervised algorithm that learns 
fixed length representation of from variable-length texts: 
each doc is a dense vector trained to predict words in the 
doc

● More general than Socher approach (RNTNs)

● New state-of-art: on sentiment analysis task, beat the best 
by 16% in terms of error rate. 

● Text classification: beat bag-of-words models by 30% 



  

The model

● Concatenate paragraph vector with several 
word vectors (from paragraph) → predict 
following word in the context

● Paragraph vectors and word vectors trained by 
SGD and backprop

● Paragraph vector unique to each paragraph
● Word vectors shared over all paragraphs
● Can construct representations of variable-

length input sequences (beyond sentence)



  

Paragraph Vector Framework



  

PV-DM: Distributed Memory 
Model of Paragraph Vectors

● N paragraphs, M words in vocab
● Each paragraph → p dims; words → q dims
● N*p + M*q; updates during training are sparse
● Contexts are fixed length, sliding window over 

paragraph; paragraph shared across all 
contexts which are derived from that paragraph

● Paragraph matrix D; tokens act as memory 
“what is missing” from current context

● Paragraph vector averaged/concatenated with 
word vectors to predict next word in context



  

Model parameters recap

● Word vectors W; softmax weights U, b
● Paragraph vectors D on previously seen 

paragraphs
● Note:  at prediction time, need to calculate 

paragraph vector for new paragraph.  → do 
gradient descent leaving all other parameters 
(W, U, b) fixed. 

● Resulting vectors can be fed to other ML 
models



  

Why are paragraph vectors good

● Learned from unlabeled data
● Take word order into consideration (better than 

n-gram)
● Not too high-dimensional; generalizes well



  

Distributed bag of words

● Paragraph vector w/out word order
● Store only softmax weights aside from 

paragraph vectors
● Force model to predict words randomly 

sampled from paragraph
● (sample text window, sample word from window 

and form classification task with vector)
● Analagous to skip-gram model 



  

PV-DBOW picture



  

Experiments

● Test with standard PV-DM
● Use combination of PV-DM with PV-DBOW
● Latter typically does better
● Tasks:

– Sentiment Analysis (Stanford Treebank)

– Sentiment Analysis (IMDB)

– Information Retrieval: for search queries, create 
triple of paragraphs. Two are from query 
results, one is sampled from rest of collection

● Which is different?



  

Experimental Protocols

● Learned vectors have 400 dimensions
● For Stanford Treebank, optimal window size = 

8: paragraph vec + 7 word vecs → predict 8th 
word

● For IMDB, optimal window size = 10 
● Cross validate window size between 5 and 12
● Special characters treated as normal words



  

Stanford Treebank Results



  

IMDB Results



  

Information Retrieval Results



  

Takeaways of Paragraph Vector

● PV-DM > PV-DBOW; combination is best
● Concatenation > sum in PV-DM 
● Paragraph vector computation can be 

expensive, but is do-able. For testing, the IMDB 
dataset (25,000 docs, 230 words/doc)

● For IMDB testing, paragraph vectors were 
computed in parallel  30 min using 16 core 
machine

● This method can be applied to other sequential 
data too 



  

Neural Nets for Machine 
Translation

● Machine translation problem: you have a 
source sentence in language A and a target 
language B to derive 

● Translate A → B: hard, large # of possible 
translations

● Typically there is a pipeline of techniques
● Neural nets have been considered as 

component of pipeline
● Lately, go for broke: why not do it all with NN?
● Potential weakness: fixed, small vocab  



  

Sequence-to-Sequence Learning 
(Sutskever, Vinyals, Le 2014)

● Main problem with deep neural nets: can only 
be applied to problems with inputs and targets 
of fixed dimensionality

● RNNs do not have that constraint, but have 
fuzzy memory

● LSTM is a model that is able to keep long-term 
context 

● LSTMs are applied to English to French 
translation (sequence of english words → 
sequence of french words) 

 



  

How are LSTMs Built?

(references to Graves (2014))



  

Basic RNN: “Deep learning in 
time and space”



  

LSTM Memory Cells

● Instead of hidden layer being element-wise 
application of sigmoid function, we custom 
design “memory cells” to store information

● These end up being better at finding / exploiting 
long-range dependencies in data



  

LSTM block



  

LSTM equations

i_t: input gate, f_t: forget gate, c_t: cell, o_t: output gat, 
h_t: hidden vector



  

Model in more detail

● Deep LSTM1 maps input sequence to large 
fixed-dimension vector; reads input 1 time step 
at a time

● Deep LSTM2: decodes target sequence from 
fixed-dimension vector (essentially RNN-LM 
conditioned on input sequence)

● Goal of LSTM: estimate conditional probability 
p(yT' | xT), where xT is the sequence of english 
words (length T) and yT' is a translation to 
french (length T'). Note T != T' necessarily.



  

LSTM translation overview



  

Model continued (2)

● Probability distributions represented with 
softmax

● . v is fixed dimensional representation of input 
xT

●



  

Model continued (3)

● Different LSTMs were used for input and output 
(trained with different resulting weights) → can 
train multiple language pairs as a result

● LSTMs had 4 layers 
● In training, reversed the order of the input 

phrase (the english phrase). 
● If <a, b, c> corresponds to <x, y, z>, then the 

input was fed to LSTM as: <c, b, a> → <x, y, z>
● This greatly improves performance



  

Experiment Details

● WMT '14 English-French dataset: 348M French 
Words, 304M English words

● Fixed vocabulary for both languages: 
– 160000 english words, 80000 french words

– Out of vocab: replaced with <unk> 

● Objective: maximize log probability of correct 
translation T given source sentence S

● Produce translations by finding the most likely 
one according to LSTM using beam-search 
decoder (B partial hypotheses at any given 
time)



  

Training Details

● Deep LSTMs with 4 layers; 1000 cells/layer; 
1000-dim word embeddings 

● Use 8000 real #s to represent sentence 
– (4*1000) *2

● Use naïve softmax for output
● 384M parameters; 64M are pure recurrent 

connections (32M for encoder and 32M for 
decoder)



  

Experiment 2

● Second task: Took an SMT system's 1000-best 
outputs and re-ranked them with the LSTM

● Compute log probability of each hypothesis and 
average previous score with LSTM score; re-
order. 



  

More training details

● Parameter init uniform between -0.08 and 0.08
● Stochastic gradient descent w/out momentum 

(fixed learning rate of 0.7)
● Halved learning rate each half-epoch after 5 

training epochs; 7.5 total epochs for training
● 128-sized batches for gradient descent 
● Hard constraint on norm of gradient to prevent 

explosion
● Ensemble: random initializations + random 

mini-batch order differentiate the nets



  

BLEU score: reminder

● Between 0 and 1 (or 0 and 100 → multiply by 
100)

● Closer to 1 means better translation
● Basic idea: given candidate translation, get the 

counts for each of the 4-grams in the translation
● Find max # of times each 4-gram appears in 

any of the reference translations, and calculate 
the fraction for 4-gram x: (#x in candidate 
translation)/(max#x in any reference translation)

● Take geometric mean to obtain total score 



  

Results (BLEU score)



  

Results (PCA projection)



  

Performance v. length; rarity



  

Results Summary
● LSTM did well on long sentences
● Did not beat the very best WMT'14 system, first 

time that pure neural translation outperforms an 
SMT baseline on a large-scale task by a wide 
margin, even though the LSTM model does not 
handle out-of-vocab terms

● Improvement by reversing the word order
– Couldn't train RNN model on non-reversed 

problem

– Perhaps is possible with reversed model

● Short-term dependencies important for learning



  

Rare Word Problem

● In the Neural Machine Translation system we 
just saw, we had a small vocabulary (only 80k)

● How to handle out-of-vocab (OOV) words? 
● Same authors + a few others from previous 

paper decided to upgrade their previous paper 
with a simple word alignment technique

● Matches OOV words in target to corresponding 
word in source, and does a lookup using 
dictionary



  

Rare Word Problem (2)

● Previous paper observes sentences with many 
rare words are translated much more poorly 
than sentences containing mainly frequent 
words

● (contrast with Paragraph vector, where less 
frequent vectors added more information → 
recall paragraph vector was unsupervised)

● Potential reason prev paper didn't beat 
standard MT systems: did not take advantage 
of larger vocabulary and explicit alignments/ 
phrase counts → fail on rare words



  

How to solve rare word for NMT?

● Previous paper: use <unk> symbol to represent 
all OOV words



  

How to solve – intelligently!

● Main idea: match the <unk> outputs with the 
word that caused them in the source sentence

● Now we can do a dictionary lookup and 
translate the source word

● If that fails, we can use identity map → just stick 
the word in from source language (might be the 
same in both languages → typically for 
something like a proper noun)



  

Construct Dictionary

● First we need to align the parallel texts
– Do this with an unsupervised aligner (Berkeley 

aligner, GIZA++ tools exist..)

– General idea: can use expectation maximization 
on parallel corpora

– Learn statistical models of the language, find 
similar features in the corpora and align them

– A field unto itself

● We DO NOT use the neural net to do any 
aligning!  



  

Constructing Dictionary (2)

● Three strategies for annotating the texts
● we're modifying the text based on alignment 

understanding
● They are:

– Copyable Model

– PosAll Model (Positional All)

– PosUnk Model (Positional Unknown)



  

Copyable Model

● Order unknown words unk1,... in source

● For unknown – unknown matches, use unk1, 2, etc.

● For unknown – known matches, use unk_null (cannot 
translate unk_null)

● Also use null when no alignment



  

PosAll Model

● Only use <unk> token
● In target sentence, place a pos_d token before 

every <unk>
● pos_d denotes relative position that the target 

word is aligned to in source (|d| <= 7)



  

PosUnk Model

● Previous model doubles length of target 
sentence..

● Let's only annotate alignments of unknown 
words in target

● Use unkpos_d (|d| <= 7): denote unknown and 
relative distance to aligned source word (d set 
to null when no alignment)

● Use <unk> for all other source unknowns



  

PosUnk Model



  

Training

● Train on same dataset as previous paper for comparison 
with same NN model (LSTM)

● They have difficult with softmax slowness on vocabulary, 
so they limit to 40K most used french words (reduced from 
80k) (only on the output end)

● (they could have used hierarchical softmax or Negative 
sampling) 

● On source side, they use 200K most frequent words

● ALL OTHER WORDS ARE UNKNOWN 

● They used the previously-mentioned Berkeley aligner in 
default



  

Results



  

Results (2)

● Interesting to note that ensemble models get 
more gain from the post-processing step

● More larger models identify source word 
position more accurately → PosUnk more 
useful

● Best result outperforms currently existing state-
of-the-art 

● Way outperforms previous NMT systems



  

And now for something 
completely different..

● Semantic Hashing – Salakhutdinov & Hinton 
(2007)

● Finding binary codes for fast document retrieval 
● Learn a deep generative model:

– Lowest layer is word-count vector

– Highest is a learned binary code for document

● Use autoencoders



  

TF-IDF

● Term frequency-inverse document frequency
● Measures similarity between documents by 

comparing word-count vectors
● ~ freq(word in query)
● ~ log(1/freq(word in docs))
● Used to retrieve documents similar to a query 

document 



  

Drawbacks of TF-IDF

● Can be slow for large vocabularies
● Assumes counts of different words are 

independent evidence of similarity
● Does not use semantic similarity between 

words
● Other things tried: LSA, pLSA, → LDA
● We can view as follows: hidden topic variables 

have directed connections to word-count 
variables



  

Semantic hashing

● Produces shortlist of documents in time 
independent of the size of the document 
collection; linear in size of shortlist

● The main idea is that learned binary projections 
are a powerful way to index large collections 
according to content 

● Formulate projections to ~ preserve a similarity 
function of interest

● Then can explore Hamming ball volume around 
a query, or use hash tables to search data

● (radius d: differs in at most d positions)



  

Semantic Hashing (cont.)

● Why binary? By carefully choosing information 
for each bit, can do better than real-values

● Outline of approach: 
– Generative model for word-count vectors

– Train RBMs recursively based on generative 
model

– Fine-tune representation with multi-layer 
autoencoder

– Binarize output of autoencoder with 
deterministic Gaussian noise



  

The Approach



  

Modeling word-count vectors

● Constrained Poisson for modeling word count 
vectors v

– Ensure mean Poisson rates across all words 
sum to length of document

– Learning is stable; deals appropriately w/diff 
length documents

● Conditional Bernoulli for modeling hidden topic 
features



  

First Layer: Poisson → Binary



  

Model equations



  

Marginal distribution p(v) w/ 
energy



  

Gradient Ascent 
Updates/approximation



  

Pre-training: Extend beyond one 
layer

● Now we have the first layer, from Poisson word-
count vector to first binary layer. 

● Note that this defines an undirected model p(v, 
h)

● The next layers will all be binary → binary
● p(v) (higher level RBM) starts out as p(h) from 

lower level, train using data generated from p(h|
v) applied to the training data.. 

● By some variational bound math, this 
consistently increases lower bound on log 
probability (which is good)



  

Summary so far

● Pre-training: We're using higher-level RBMs to 
improve our deep hierarchical model

● Higher level RBMs are binary → binary
● First level is Poisson → binary
● The point of all this is to initialize weights in the 

autoencoder to learn a 32-dim representation
● The idea is that this pretraining finds a good 

area of parameter space (based on the idea 
that we have a nice generative model)



  

The Autoencoder

● Autoencoder teaches an algorithm to learn an 
identity function with reduced dimensionality

● Think of it as forcing the neural net to 
encapsulate as much information as possible in 
the smaller # of dimensions so that it can 
reconstruct it as best as it can 

● We use backpropagation here to train word-
count vectors with previous architecture (error 
data comes from itself); divide by N to get 
probability distribution

● Use cross-entropy error with softmax output



  

Binarizing the code

● We want the codes found by the autoencoder to 
be as close to binary as possible

● Add noise: best way to communicate info in 
presence of noise is to boost your signals so 
that they are distinguishable  → i.e. one strong 
positive, one strong negative signal →  binary

● Don't want noise to mess up training, so we 
keep it fixed → “deterministic noise”

● Use N(0, 16)



  

Testing

● The task: given a query document, retrieve 
relevant documents

● Recall = # retrieved relevant docs/ total relevant 
docs

● Precision = # relevant retrieved docs / total 
retrieved docs

● Relevance = check if the documents have the 
same class label 

● LSA and TF-IDF are used as benchmarks



  

Corpora

● 20-Newsgroups
– 18845 postings from Usenet

– 20 different topics

– Only considered 2000 most frequent words in 
training

● Reuters Corpus Vol II
– 804414 newswire stories, 103 topics

– Corporate/industrial, econ, gov/soc, markets

– Only considered 2000 most frequent words in 
training



  

Results (128-bit)



  

Precision-Recall Curves



  

Results (20-bit)

● Restricting the bit size down to only 20 bits, 
does it still work well? (0.4 docs / address)

● Given: query → compute 20bit address
– > retrieve all documents in Hamming Ball of 

radius 4 (~ 2500 documents)

– > No search performed

– > short list made with TF-IDF

– > no precision or recall lost when TF-IDF 
restricted to this pre-selected set!

– > considerable speed up



  

Results (20bit)



  

Some Numbers

● 30-bit for 1 billion docs: 1 doc/address; requires 
a few Gbs of memory

● Hamming Ball radius 5 → 175000 shortlist w/no 
search (can simply enumerate when required)

● Scaling learning is not difficult
– Training on 10^9 docs takes < few weeks with 

100 cores

– “large organization” could train on many billions

● No need to generalize to new data if learning is 
ongoing (should improve upon results)



  

Potential problem

● Documents with similar addresses have similar 
content, but converse is not necessarily true

● Could have multiple spread out regions which 
are the same internally and also same 
externally, but far apart.

● Potential fix: add an extra penalty term during 
optimization → can use information about 
relevance of documents to construct this term

● → can backpropagate this through the net



  

How to View Semantic Hashing

● Each of the binary values in the code 
represents a set containing about half the 
document collection

● We want to intersect these sets for particular 
features

● Semantic hashing is a way of mapping set 
intersections required directly onto address bus

● Address bus can intersect sets with a single 
machine instruction! 



  

Overview of Deep Learning NLP

● Colorful variety of approaches

● Started a while ago, revival of old ideas today applied to more 
data and better systems

● → Neural Net Language Model (Bengio)

● → RNNLM (use recurrent instead of feedforward)

● Skip-gram (2013) (simplification good)

● Paragraph Vector (2014) (beats Socher)

● LSTMs for MT (2014) (Sequence – Sequence w/LSTM)

● Semantic Hashing (Autoencoders)

● We did not cover: → Socher and RNTN for instance



  

Thank you for listening!
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