
  

Deep Learning for NLP

Kiran Vodrahalli
Feb 11, 2015 



  

Overview

● What is NLP? 
– Natural Language Processing 

– We try to extract meaning from text: sentiment, 
word sense, semantic similarity, etc.

● How does Deep Learning relate? 
– NLP typically has sequential learning tasks 

● What tasks are popular?
– Predict next word given context

– Word similarity, word disambiguation

– Analogy / Question answering

  



  

Papers Timeline

● Bengio (2003)
● Hinton (2009)
● Mikolov (2010, 2013, 2013, 2014)

– RNN → word vector → phrase vector → 
paragraph vector

● Quoc Le (2014, 2014, 2014)
● Interesting to see the transition of ideas and 

approaches (note: Socher 2010 – 2014 papers)
● We will go through the main ideas first and 

assess specific methods and results in more 
detail later



  

Standard NLP Techniques

● Bag-of-Words
● Word-Context Matrices

– LSA

– Others... (construct matrix, smooth, dimension 
reduction)

● Topic modeling 
– Latent Dirichlet Allocation

● Statistics-based

● N-grams



  

Some common metrics in NLP
● Perplexity (PPL): Exponential of average negative log likelihood 

– geometric average of the inverse of probability of seeing a word 
given the previous n words

– 2 to the power of cross entropy of your language model with the 

test data 

–     
● BLEU score: measures how many words overlap in a given translation 

compared to a reference, with higher scores given to sequential words

– Values closer to 1 are more similar (would like human and machine 
translation to be very close)

● Word Error Rate (WER): derived from Levenstein distance

– WER = (S + D + I)/ (S + D + C)

– S = substitutions, D = deletions, I = insertions, C = corrections 

1

P̂ (wt∣w1
t−1)



  

Statistical Model of Language

● Conditional probability of one word given all the 
previous ones

●



  

Issues for Current Methods

● Too slow
● Stopped improving when fed increasingly larger 

amounts of data
● Very simple and naïve; works surprisingly well 

but not well enough
● Various methods don't take into account 

semantics, word-order, long-range context
● A lot of parsing required and/or hand-built 

models
● Need to generalize!



  

N-grams

● Consider combinations of successive words of 
smaller size and predict see what comes next 
for all of those. 

● Smoothing can be done for new combinations 
(which do not occur in training set)

● Bengio: we can improve upon this!
– They don't typically look at contexts > 3 words

– Words can be similar: n-grams don't use this to 
generalize when we should be!



  

Word Vectors

● Concept will show up in a lot of the papers
● The idea is we represent a word by a dense 

vector in semantic space
● Other vectors close by should be semantically 

similar
● Several ways of generating them; the papers 

we will look at generate them with Neural Net 
procedures



  

Neural Probabilistic Language 
Model (Bengio 2003)

● Fight the curse of dimensionality with 
continuous word vectors and probability 
distributions

● Feedforward net that both learns word vector 
representation and a statistical language model 
simultaneously 

● Generalization: “similar” words have similar feature 
vectors; probability function is smooth function of these 
values → small change in features induces small change 
in probability, and we distribute the probability mass 
evenly to a combinatorial number of similar neighboring 
sentences every time we see a sentence. 



  

Bengio's Neural Net Architecture



  

Bengio Network Performance 

● Has lower perplexity than smoothed tri-gram 
models (weighted sum of probabilities of 
unigram, bigram, up to trigram) on Brown 
corpus

● Perplexity of best neural net approach: 252
– (100 hidden units; look back 4 words; 30 word 

features, no connections between word layer 
and output layer; output probability averaged 
with trigram output probability)

● Perplexity of best tri-gram only approach: 312 



  

RNN-based Language Model 
(Mikolov 2010)

● RNN-LM: 50% reduction on perplexity possible 
over n-gram techniques

● Feeding off of Bengio's work, which used 
feedforward net → Now we try RNN! More 
general, not as dependent on parsing, 
morphology, etc. Learn from the data directly.

● Why use RNN? 
– Language data is sequential; RNN is good 

approach for sequential data (no required 
fixed input size) → can unrestrict context



  

Simple RNN Model



  

RNN Model Description

● Input: x(t): formed by concatenating vector w (current 
word) with the context s(t – 1)

● Hidden context layer activation: sigmoid 

● Output y(t): softmax layer to output probability 
distribution (we are predicting probability of each word 
being the next word)

● error(t) = desired(t) – y(t); where desired(t) is 1-of-V 
encoding for the correct next word 

● Word input uses 1-of-V encoding

● Context layer can be initialized with small weights

● Use trunctated backprop through time (BPTT) and 
SGD to train 



  

More details on RNN model

● Rare word tokens: merge words that occur less 
often than some threshold into a rare-word 
token

– prob(rare word) = y
rare

(t)/ (number of rare words)

–  y
rare

(t) is the rare-word token

● The dynamic model: network should continue 
training even during testing phase, since the 
point of the model is to update the context 



  

Performance of RNN vs. KN5 on 
WSJ dataset



  

More data = larger improvement



  

More RNN comparisons

● Previous approaches were not state-of-the-
art,we display improvement on state-of-the-art 
AMI system for speech transcription in 
meetings on NIST RT05 dataset

● Training data: 115 hours of meeting speech 
from many training corpora

●  



  

Mikolov 2013 Summary

● In 2013, word2vec (Google) made big news 
with word vector representations that were able 
to represent vector compositionality 

● vec(Paris) – vec(France) + vec(Italy) = vec(Rome)
● Trained relatively quickly, NOT using neural net 

nonlinear complexity
● “less than a day to learn high quality word vectors 

from 1.6 billion word Google News corpus dataset”
● (note: this corpus internal to Google) 



  

Efficient Estimation of Word Representations 
in Vector Space (Mikolov 2013)

● Trying to maximize accuracy of vector 
operations by developing new model 
architectures that preserve linear regularities 
among words; minimize complexity

● Approach: continuous word vectors learned 
using simple model; n-gram NNLM (Bengio) 
trained on top of these distributed 
representations

● Extension of previous two papers (Bengio; 
Mikolov(2010) )
 



  

Training Complexity

● We are concerned with making the complexity as simple 
as possible to allow training on larger datasets in smaller 
amounts of time. 

● Definition: O = E*T*Q, where E = # of training epochs, T = 
# of words in training set, Q = model-specific factor (i.e. in 
a neural net, counting number of size of connection 
matrices)

● N: # previous words, D: # dims in representation, H: 
hidden layer size; V: vocab size

● Feedforward NNLM: Q = N*D + N*D*H + H*log
2
V

● Recurrent NNLM (RNNLM): Q = H*H + H*log
2
V

– Log
2
V comes from using hierarchical softmax



  

●

● Want to learn probability distribution on words
● Speed up calculations by building a 

conditioning tree
● Tree is Huffman code: high-frequency words 

are assigned small codes (near the top of the 
tree)

● Improves updates from V to log
2
V

Hierarchical Softmax
ez j

∑
i=1

K

ez k



  

New Log-linear models 
● CBOW (Continuous Bag of Words)

– Context predicts word

– All words get projected to same position (averaged) → lose 
order of words info

– Q = N*D + D*log
2
V

● Skip-gram (we will go into more detail later)

– Word predicts context, a range before and after the current word

– Less weight given to more distant words

– Log-linear classifier with continuous projection layer

– C: maximum distance between words 

– Q = C*( D + D*log
2
V)

● avoid the complexity of neural nets to train good word vectors; use log-linear 
optimization (achieve global maximum on max log probability objective)

● Can take advantage of more data due to speed up



  

CBOW Diagram



  

Skip-gram diagram



  

Results

● Vector algebra result: possible to find answers 
to analogy questions like “What is the word that 
is similar to small in the same sense as biggest  
is to big?” (vec(“biggest”) - vec(“big”) + 
vec(“small”) = ?)

● The task: test set containing 5 types of 
semantic questions; 9 types of syntactic 
questions

● Summarized in the following table:



  

Mikolov test questions



  

Performance on Syntactic-
Semantic Questions



  

Summary comparison of architectures

● Word vectors from RNN perform well on 
syntactic questions; NNLM vectors perform 
better than RNN (RNNLM has a non-linear 
layer directly connected to word vectors; NNLM 
has interfering projection layer)

● CBOW > NNLM on synactic, bit better on semantic

● Skip-gram ~ CBOW (a bit worse) on syntactic
● Skip-gram >>> everything else on semantic
● This is all for training done with parallel training



  

Comparison to other approaches 
(1 CPU only)



  

Varying epochs, training set size



  

Microsoft Sentence Completion

● 1040 sentences; one word missing / sentence, 
goal is to select the word that is most coherent 
with the rest of the sentence

●



  

Skip-gram Learned Relationships



  

Versatility of vectors

● Word vector representation also allows solving 
tasks like finding the word that doesn't belong in 
the list (i.e. (“apple”, “orange”, “banana”, 
“airplane”) )

● Compute average vector of words, find the 
most distant one → this is out of the list. 

● Good word vectors could be useful in many 
NLP applications: sentiment analysis, 
paraphrase detection 



  

DistBelief Training

● They claim should be possible to train CBOW 
and Skip-gram models on corpora with ~ 10^12 
words, orders of magnitude larger than previous 
results (log complexity of vocabulary size)

●



  

Focusing on Skip-gram

● Skip-gram did much better than everything else 
on the semantic questions; this is interesting. 

● We investigate further improvements (Mikolov 
2013, part 2)

● Subsampling gives more speedup
● So does negative sampling (used over 

hierarchical softmax)



  

Recall: Skip-gram Objective



  

Basic Skip-gram Formulation

● (Again, we're maximizing average log 
probability over the set of context words we 
predict with the current word)

● C is the size of the training context
– Larger c → more accuracy, more time

● v_w and v_w' are input and output 
representations of w, W is # of words

● Use softmax function to define probability; this 
formulation is not efficient → hierarchical 
softmax



  

OR: Negative Sampling

● Another approach to learning good vector 
representations to hierarchical softmax

● Based off of Noise Constrastive Estimation 
(NCE): a good model should differentiate data 
from noise via logistic regression

● Simplify NCE →  Negative sampling 
●  



  

Explanation of NEG objective

● For each (word, context) example in the corpus we 
take k additional samples of (word, context) pairs NOT 
in the corpus (by generating random pairs according to 
some distribution Pn(w))

● We want the probability that these are valid to be very 
low

● These are the “negative samples”; k ~ 5 – 20 for larger 
data sets, ~ 2 – 5 for small 

●



  

Subsampling frequent words

● Extremely frequent words provide less 
information value than rarer words

● Each word w_i in training set is discarded with 
probability; t (threshold) ~ 10^-5: aggressively 
subsamples while preserving frequency ranking

● Accelerates learning; does well in practice

f is frequency of word; P(w_i): prob to discard 
●



  

Results on analogical reasoning 
(previous paper's task)

● Recall the task: “Germany”: “Berlin” :: “France”:?
● Approach to solve: find x s.t. vec(x) is closest to 

vec(“Berlin”) - vec(“Germany”) + vec(“France”)
● V = 692K
● Standard sigmoidal RNNs (highly non-linear) 

improve upon this task; skip-gram is highly 
linear

● Sigmoidal RNNs → preference for linear 
structure? Skip-gram may be a shortcut



  

Performance on task



  

What do the vectors look like?



  

Applying Approach to Phrase 
vectors

●  “phrase” → meaning can't be found by composition; words 
that appear frequently together; infrequently elsewhere 

● Ex: New York Times becomes a single token

● Generate many “reasonable phrases” using 
unigram/bigram frequencies with a discount term; (don't 
just use all n-grams)

● Use Skip-gram for analogical reasoning task for phrases (3128 
examples)

●



  

Examples of analogical reasoning 
task for phrases



  

Additive Compositionality

● Can meaningfully combine vectors with term-
wise addition

● Examples:
●



  

Additive Compositionality

● Explanation: word vectors in linear relationship 
with softmax nonlinearity

● Vectors represent distribution of context in 
which word appears

● These values are logarithmically related to 
probabilities, so sums correspond to products; 
i.e. we are ANDing together the two words in 
the sum.  

● Sum of word vecs ~ product of context 
distributions 



  

Nearest Neighbors of Infrequent 
Words



  

Paragraph Vector!

● Quoc Le and Mikolov (2014)

● Input is often required to be fixed-length for NNs

● Bag-of-words lose ordering of words and ignore semantics

● Paragraph Vector is unsupervised algorithm that learns 
fixed length representation of from variable-length texts: 
each doc is a dense vector trained to predict words in the 
doc

● More general than Socher approach (RNTNs)

● New state-of-art: on sentiment analysis task, beat the best 
by 16% in terms of error rate. 

● Text classification: beat bag-of-words models by 30% 



  

The model

● Concatenate paragraph vector with several 
word vectors (from paragraph) → predict 
following word in the context

● Paragraph vectors and word vectors trained by 
SGD and backprop

● Paragraph vector unique to each paragraph
● Word vectors shared over all paragraphs
● Can construct representations of variable-

length input sequences (beyond sentence)



  

Paragraph Vector Framework



  

PV-DM: Distributed Memory 
Model of Paragraph Vectors

● N paragraphs, M words in vocab
● Each paragraph → p dims; words → q dims
● N*p + M*q; updates during training are sparse
● Contexts are fixed length, sliding window over 

paragraph; paragraph shared across all 
contexts which are derived from that paragraph

● Paragraph matrix D; tokens act as memory 
“what is missing” from current context

● Paragraph vector averaged/concatenated with 
word vectors to predict next word in context



  

Model parameters recap

● Word vectors W; softmax weights U, b
● Paragraph vectors D on previously seen 

paragraphs
● Note:  at prediction time, need to calculate 

paragraph vector for new paragraph.  → do 
gradient descent leaving all other parameters 
(W, U, b) fixed. 

● Resulting vectors can be fed to other ML 
models



  

Why are paragraph vectors good

● Learned from unlabeled data
● Take word order into consideration (better than 

n-gram)
● Not too high-dimensional; generalizes well



  

Distributed bag of words

● Paragraph vector w/out word order
● Store only softmax weights aside from 

paragraph vectors
● Force model to predict words randomly 

sampled from paragraph
● (sample text window, sample word from window 

and form classification task with vector)
● Analagous to skip-gram model 



  

PV-DBOW picture



  

Experiments

● Test with standard PV-DM
● Use combination of PV-DM with PV-DBOW
● Latter typically does better
● Tasks:

– Sentiment Analysis (Stanford Treebank)

– Sentiment Analysis (IMDB)

– Information Retrieval: for search queries, create 
triple of paragraphs. Two are from query 
results, one is sampled from rest of collection

● Which is different?



  

Experimental Protocols

● Learned vectors have 400 dimensions
● For Stanford Treebank, optimal window size = 

8: paragraph vec + 7 word vecs → predict 8th 
word

● For IMDB, optimal window size = 10 
● Cross validate window size between 5 and 12
● Special characters treated as normal words



  

Stanford Treebank Results



  

IMDB Results



  

Information Retrieval Results



  

Takeaways of Paragraph Vector

● PV-DM > PV-DBOW; combination is best
● Concatenation > sum in PV-DM 
● Paragraph vector computation can be 

expensive, but is do-able. For testing, the IMDB 
dataset (25,000 docs, 230 words/doc)

● For IMDB testing, paragraph vectors were 
computed in parallel  30 min using 16 core 
machine

● This method can be applied to other sequential 
data too 



  

Neural Nets for Machine 
Translation

● Machine translation problem: you have a 
source sentence in language A and a target 
language B to derive 

● Translate A → B: hard, large # of possible 
translations

● Typically there is a pipeline of techniques
● Neural nets have been considered as 

component of pipeline
● Lately, go for broke: why not do it all with NN?
● Potential weakness: fixed, small vocab  



  

Sequence-to-Sequence Learning 
(Sutskever, Vinyals, Le 2014)

● Main problem with deep neural nets: can only 
be applied to problems with inputs and targets 
of fixed dimensionality

● RNNs do not have that constraint, but have 
fuzzy memory

● LSTM is a model that is able to keep long-term 
context 

● LSTMs are applied to English to French 
translation (sequence of english words → 
sequence of french words) 

 



  

How are LSTMs Built?

(references to Graves (2014))



  

Basic RNN: “Deep learning in 
time and space”



  

LSTM Memory Cells

● Instead of hidden layer being element-wise 
application of sigmoid function, we custom 
design “memory cells” to store information

● These end up being better at finding / exploiting 
long-range dependencies in data



  

LSTM block



  

LSTM equations

i_t: input gate, f_t: forget gate, c_t: cell, o_t: output gat, 
h_t: hidden vector



  

Model in more detail

● Deep LSTM1 maps input sequence to large 
fixed-dimension vector; reads input 1 time step 
at a time

● Deep LSTM2: decodes target sequence from 
fixed-dimension vector (essentially RNN-LM 
conditioned on input sequence)

● Goal of LSTM: estimate conditional probability 
p(yT' | xT), where xT is the sequence of english 
words (length T) and yT' is a translation to 
french (length T'). Note T != T' necessarily.



  

LSTM translation overview



  

Model continued (2)

● Probability distributions represented with 
softmax

● . v is fixed dimensional representation of input 
xT

●



  

Model continued (3)

● Different LSTMs were used for input and output 
(trained with different resulting weights) → can 
train multiple language pairs as a result

● LSTMs had 4 layers 
● In training, reversed the order of the input 

phrase (the english phrase). 
● If <a, b, c> corresponds to <x, y, z>, then the 

input was fed to LSTM as: <c, b, a> → <x, y, z>
● This greatly improves performance



  

Experiment Details

● WMT '14 English-French dataset: 348M French 
Words, 304M English words

● Fixed vocabulary for both languages: 
– 160000 english words, 80000 french words

– Out of vocab: replaced with <unk> 

● Objective: maximize log probability of correct 
translation T given source sentence S

● Produce translations by finding the most likely 
one according to LSTM using beam-search 
decoder (B partial hypotheses at any given 
time)



  

Training Details

● Deep LSTMs with 4 layers; 1000 cells/layer; 
1000-dim word embeddings 

● Use 8000 real #s to represent sentence 
– (4*1000) *2

● Use naïve softmax for output
● 384M parameters; 64M are pure recurrent 

connections (32M for encoder and 32M for 
decoder)



  

Experiment 2

● Second task: Took an SMT system's 1000-best 
outputs and re-ranked them with the LSTM

● Compute log probability of each hypothesis and 
average previous score with LSTM score; re-
order. 



  

More training details

● Parameter init uniform between -0.08 and 0.08
● Stochastic gradient descent w/out momentum 

(fixed learning rate of 0.7)
● Halved learning rate each half-epoch after 5 

training epochs; 7.5 total epochs for training
● 128-sized batches for gradient descent 
● Hard constraint on norm of gradient to prevent 

explosion
● Ensemble: random initializations + random 

mini-batch order differentiate the nets



  

BLEU score: reminder

● Between 0 and 1 (or 0 and 100 → multiply by 
100)

● Closer to 1 means better translation
● Basic idea: given candidate translation, get the 

counts for each of the 4-grams in the translation
● Find max # of times each 4-gram appears in 

any of the reference translations, and calculate 
the fraction for 4-gram x: (#x in candidate 
translation)/(max#x in any reference translation)

● Take geometric mean to obtain total score 



  

Results (BLEU score)



  

Results (PCA projection)



  

Performance v. length; rarity



  

Results Summary
● LSTM did well on long sentences
● Did not beat the very best WMT'14 system, first 

time that pure neural translation outperforms an 
SMT baseline on a large-scale task by a wide 
margin, even though the LSTM model does not 
handle out-of-vocab terms

● Improvement by reversing the word order
– Couldn't train RNN model on non-reversed 

problem

– Perhaps is possible with reversed model

● Short-term dependencies important for learning



  

Rare Word Problem

● In the Neural Machine Translation system we 
just saw, we had a small vocabulary (only 80k)

● How to handle out-of-vocab (OOV) words? 
● Same authors + a few others from previous 

paper decided to upgrade their previous paper 
with a simple word alignment technique

● Matches OOV words in target to corresponding 
word in source, and does a lookup using 
dictionary



  

Rare Word Problem (2)

● Previous paper observes sentences with many 
rare words are translated much more poorly 
than sentences containing mainly frequent 
words

● (contrast with Paragraph vector, where less 
frequent vectors added more information → 
recall paragraph vector was unsupervised)

● Potential reason prev paper didn't beat 
standard MT systems: did not take advantage 
of larger vocabulary and explicit alignments/ 
phrase counts → fail on rare words



  

How to solve rare word for NMT?

● Previous paper: use <unk> symbol to represent 
all OOV words



  

How to solve – intelligently!

● Main idea: match the <unk> outputs with the 
word that caused them in the source sentence

● Now we can do a dictionary lookup and 
translate the source word

● If that fails, we can use identity map → just stick 
the word in from source language (might be the 
same in both languages → typically for 
something like a proper noun)



  

Construct Dictionary

● First we need to align the parallel texts
– Do this with an unsupervised aligner (Berkeley 

aligner, GIZA++ tools exist..)

– General idea: can use expectation maximization 
on parallel corpora

– Learn statistical models of the language, find 
similar features in the corpora and align them

– A field unto itself

● We DO NOT use the neural net to do any 
aligning!  



  

Constructing Dictionary (2)

● Three strategies for annotating the texts
● we're modifying the text based on alignment 

understanding
● They are:

– Copyable Model

– PosAll Model (Positional All)

– PosUnk Model (Positional Unknown)



  

Copyable Model

● Order unknown words unk1,... in source

● For unknown – unknown matches, use unk1, 2, etc.

● For unknown – known matches, use unk_null (cannot 
translate unk_null)

● Also use null when no alignment



  

PosAll Model

● Only use <unk> token
● In target sentence, place a pos_d token before 

every <unk>
● pos_d denotes relative position that the target 

word is aligned to in source (|d| <= 7)



  

PosUnk Model

● Previous model doubles length of target 
sentence..

● Let's only annotate alignments of unknown 
words in target

● Use unkpos_d (|d| <= 7): denote unknown and 
relative distance to aligned source word (d set 
to null when no alignment)

● Use <unk> for all other source unknowns



  

PosUnk Model



  

Training

● Train on same dataset as previous paper for comparison 
with same NN model (LSTM)

● They have difficult with softmax slowness on vocabulary, 
so they limit to 40K most used french words (reduced from 
80k) (only on the output end)

● (they could have used hierarchical softmax or Negative 
sampling) 

● On source side, they use 200K most frequent words

● ALL OTHER WORDS ARE UNKNOWN 

● They used the previously-mentioned Berkeley aligner in 
default



  

Results



  

Results (2)

● Interesting to note that ensemble models get 
more gain from the post-processing step

● More larger models identify source word 
position more accurately → PosUnk more 
useful

● Best result outperforms currently existing state-
of-the-art 

● Way outperforms previous NMT systems



  

And now for something 
completely different..

● Semantic Hashing – Salakhutdinov & Hinton 
(2007)

● Finding binary codes for fast document retrieval 
● Learn a deep generative model:

– Lowest layer is word-count vector

– Highest is a learned binary code for document

● Use autoencoders



  

TF-IDF

● Term frequency-inverse document frequency
● Measures similarity between documents by 

comparing word-count vectors
● ~ freq(word in query)
● ~ log(1/freq(word in docs))
● Used to retrieve documents similar to a query 

document 



  

Drawbacks of TF-IDF

● Can be slow for large vocabularies
● Assumes counts of different words are 

independent evidence of similarity
● Does not use semantic similarity between 

words
● Other things tried: LSA, pLSA, → LDA
● We can view as follows: hidden topic variables 

have directed connections to word-count 
variables



  

Semantic hashing

● Produces shortlist of documents in time 
independent of the size of the document 
collection; linear in size of shortlist

● The main idea is that learned binary projections 
are a powerful way to index large collections 
according to content 

● Formulate projections to ~ preserve a similarity 
function of interest

● Then can explore Hamming ball volume around 
a query, or use hash tables to search data

● (radius d: differs in at most d positions)



  

Semantic Hashing (cont.)

● Why binary? By carefully choosing information 
for each bit, can do better than real-values

● Outline of approach: 
– Generative model for word-count vectors

– Train RBMs recursively based on generative 
model

– Fine-tune representation with multi-layer 
autoencoder

– Binarize output of autoencoder with 
deterministic Gaussian noise



  

The Approach



  

Modeling word-count vectors

● Constrained Poisson for modeling word count 
vectors v

– Ensure mean Poisson rates across all words 
sum to length of document

– Learning is stable; deals appropriately w/diff 
length documents

● Conditional Bernoulli for modeling hidden topic 
features



  

First Layer: Poisson → Binary



  

Model equations



  

Marginal distribution p(v) w/ 
energy



  

Gradient Ascent 
Updates/approximation



  

Pre-training: Extend beyond one 
layer

● Now we have the first layer, from Poisson word-
count vector to first binary layer. 

● Note that this defines an undirected model p(v, 
h)

● The next layers will all be binary → binary
● p(v) (higher level RBM) starts out as p(h) from 

lower level, train using data generated from p(h|
v) applied to the training data.. 

● By some variational bound math, this 
consistently increases lower bound on log 
probability (which is good)



  

Summary so far

● Pre-training: We're using higher-level RBMs to 
improve our deep hierarchical model

● Higher level RBMs are binary → binary
● First level is Poisson → binary
● The point of all this is to initialize weights in the 

autoencoder to learn a 32-dim representation
● The idea is that this pretraining finds a good 

area of parameter space (based on the idea 
that we have a nice generative model)



  

The Autoencoder

● Autoencoder teaches an algorithm to learn an 
identity function with reduced dimensionality

● Think of it as forcing the neural net to 
encapsulate as much information as possible in 
the smaller # of dimensions so that it can 
reconstruct it as best as it can 

● We use backpropagation here to train word-
count vectors with previous architecture (error 
data comes from itself); divide by N to get 
probability distribution

● Use cross-entropy error with softmax output



  

Binarizing the code

● We want the codes found by the autoencoder to 
be as close to binary as possible

● Add noise: best way to communicate info in 
presence of noise is to boost your signals so 
that they are distinguishable  → i.e. one strong 
positive, one strong negative signal →  binary

● Don't want noise to mess up training, so we 
keep it fixed → “deterministic noise”

● Use N(0, 16)



  

Testing

● The task: given a query document, retrieve 
relevant documents

● Recall = # retrieved relevant docs/ total relevant 
docs

● Precision = # relevant retrieved docs / total 
retrieved docs

● Relevance = check if the documents have the 
same class label 

● LSA and TF-IDF are used as benchmarks



  

Corpora

● 20-Newsgroups
– 18845 postings from Usenet

– 20 different topics

– Only considered 2000 most frequent words in 
training

● Reuters Corpus Vol II
– 804414 newswire stories, 103 topics

– Corporate/industrial, econ, gov/soc, markets

– Only considered 2000 most frequent words in 
training



  

Results (128-bit)



  

Precision-Recall Curves



  

Results (20-bit)

● Restricting the bit size down to only 20 bits, 
does it still work well? (0.4 docs / address)

● Given: query → compute 20bit address
– > retrieve all documents in Hamming Ball of 

radius 4 (~ 2500 documents)

– > No search performed

– > short list made with TF-IDF

– > no precision or recall lost when TF-IDF 
restricted to this pre-selected set!

– > considerable speed up



  

Results (20bit)



  

Some Numbers

● 30-bit for 1 billion docs: 1 doc/address; requires 
a few Gbs of memory

● Hamming Ball radius 5 → 175000 shortlist w/no 
search (can simply enumerate when required)

● Scaling learning is not difficult
– Training on 10^9 docs takes < few weeks with 

100 cores

– “large organization” could train on many billions

● No need to generalize to new data if learning is 
ongoing (should improve upon results)



  

Potential problem

● Documents with similar addresses have similar 
content, but converse is not necessarily true

● Could have multiple spread out regions which 
are the same internally and also same 
externally, but far apart.

● Potential fix: add an extra penalty term during 
optimization → can use information about 
relevance of documents to construct this term

● → can backpropagate this through the net



  

How to View Semantic Hashing

● Each of the binary values in the code 
represents a set containing about half the 
document collection

● We want to intersect these sets for particular 
features

● Semantic hashing is a way of mapping set 
intersections required directly onto address bus

● Address bus can intersect sets with a single 
machine instruction! 



  

Overview of Deep Learning NLP

● Colorful variety of approaches

● Started a while ago, revival of old ideas today applied to more 
data and better systems

● → Neural Net Language Model (Bengio)

● → RNNLM (use recurrent instead of feedforward)

● Skip-gram (2013) (simplification good)

● Paragraph Vector (2014) (beats Socher)

● LSTMs for MT (2014) (Sequence – Sequence w/LSTM)

● Semantic Hashing (Autoencoders)

● We did not cover: → Socher and RNTN for instance



  

Thank you for listening!



  

Citations

1. Vincent, P. & Bengio, Y. A Neural Probabilistic Language Model. 3, 1137–1155 (2003).

2. Mikolov, T., Karafi, M. & Cernock, J. H. A Recurrent Neural Network Based Language Model. 1045–1048 (2010).

3. Luong, M.-T., Sutskever, I., Le, Q. V., Vinyals, O. & Zaremba, W. Addressing the Rare Word Problem in Neural Machine 
Translation. 1–11 (2014). at <http://arxiv.org/abs/1410.8206>

4. Le, Q., Mikolov, T. & Com, T. G. Distributed Representations of Sentences and Documents. 32, (2014).

5. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Distributed Representations of Words and Phrases and their Compositionality. 
1–9 (2013).

6. Mikolov, T., Chen, K., Corrado, G. & Dean, J. Efficient Estimation of Word Representations in Vector Space. 1–12 (2013). at 
<http://arxiv.org/abs/1301.3781>

7. Morin, F. & Bengio, Y. Hierarchical Probabilistic Neural Network Language Model.

8. Grauman, K. & Fergus, R. Learning Binary Hash Codes for Large-Scale Image Search.

9. Smith, N. A. Log-Linear Models. 1–9 (2004).

10. Krogh, A. Neural Network Ensembles , Cross Validation , and Active Learning.

11. Gutmann, M. Noise-contrastive estimation : A new estimation principle for unnormalized statistical models. 297–304 (2009).

12. Salakhutdinov, R. & Hinton, G. Semantic hashing. Int. J. Approx. Reason. 50, 969–978 (2009).

13. Sutskever, I., Vinyals, O. & Le, Q. V. Sequence to Sequence Learning with Neural Networks. 9 (2014). at 
<http://arxiv.org/abs/1409.3215>

14. Goldberg, Y. & Levy, O. word2vec Explained: deriving Mikolov et al.’s negative-sampling word-embedding method. 1–5 
(2014). at <http://arxiv.org/abs/1402.3722>

Note: some of the papers on here were used for reference and understanding 
purposes – not all were presented


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124

