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Abstract

We consider a number of questions related to tradeoffs between reward and regret in repeated game-
play between two agents. To facilitate this, we introduce a notion of generalized equilibrium which allows
for asymmetric regret constraints, and yields polytopes of feasible values for each agent and pair of regret
constraints, where we show that any such equilibrium is reachable by a pair of algorithms which main-
tain their regret guarantees against arbitrary opponents. As a central example, we highlight the case one
agent is no-swap and the other’s regret is unconstrained. We show that this captures an extension of
Stackelberg equilibria with a matching optimal value, and that there exists a wide class of games where
a player can significantly increase their utility by deviating from a no-swap-regret algorithm against a
no-swap learner (in fact, almost any game without pure Nash equilibria is of this form). Additionally, we
make use of generalized equilibria to consider tradeoffs in terms of the opponent’s algorithm choice. We
give a tight characterization for the maximal reward obtainable against some no-regret learner, yet we
also show a class of games in which this is bounded away from the value obtainable against the class of
common “mean-based” no-regret algorithms. Finally, we consider the question of learning reward-optimal
strategies via repeated play with a no-regret agent when the game is initially unknown. Again we show
tradeoffs depending on the opponent’s learning algorithm: the Stackelberg strategy is learnable in ex-
ponential time with any no-regret agent (and in polynomial time with any no-adaptive-regret agent) for
any game where it is learnable via queries, and there are games where it is learnable in polynomial time
against any no-swap-regret agent but requires exponential time against a mean-based no-regret agent.

1 Introduction

How should two rational agents play a repeated, possibly unknown, game against one another? One nat-
ural answer – barring any knowledge of the game, or the capacity to compute potentially computationally
intractible equilibria – is that they should employ some sort of learning algorithm to learn how to play over
time. Indeed, there is a vast literature which studies what happens when all the players in a repeated game
run (some specific type of) learning algorithms to select their actions. For example, when all players in a
game simultaneously run no-(swap)-regret learning algorithms, it is known that the average strategy profile
of the learners converges to a (coarse) correlated equilibrium [23, 11, 16]. More recent works have studied
how to design algorithms that converge to these equilibria at faster rates [7, 1, 8], performance guarantees of
such equilibria compared to the optimal possible welfare [4, 17], and the specific dynamics of such learning
algorithms [9, 20, 22].

In contrast, relatively little attention has been devoted to whether it is actually in the interest of these
agents to run these specific learning algorithms. For example, in a setting where all agents are running no-
swap-regret learning algorithms, when can an agent significantly benefit by deviating and running a different
type of algorithm? And if they can, what algorithm should the agent deviate to?

1.1 Our results

We explore the following questions (and others) in the case where two agents repeatedly play a normal-form,
general-sum game for T rounds.
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When does reward trade off with regret? While maximizing reward is often viewed as the objective
of regret minimization against arbitrary adversaries, tensions may emerge when playing against another
learning agent, as one’s choice of actions has a causal effect on future loss functions as determined by the
opponent’s algorithm. In such cases, as we discuss further below, it turns out that demanding a stronger
regret guarantee (e.g. asking for no-swap-regret instead of no-external-regret) may ultimately result in lower
reward for an agent. To analyze these tradeoffs, in Section 2 we introduce a notion of generalized (ΦA,ΦB)-
equilibrium, where ΦA and ΦB are the sets of “deviation strategies” over which players A and B minimize
regret (e.g. fixed actions or swap functions), presented as an asymmetric extension of the linear Φ-equilibria
considered by [13]. Each pair of strategy sets (ΦA,ΦB) generates a polytope of (ΦA,ΦB)-equilibria, where
any point then yields a reward value for each player. We show that all such points are feasible: for any
game and any (ΦA,ΦB)-equilibrium ϕ, there is a pair of algorithms which converge to ϕ while maintaining
their respective ΦA-regret and ΦB-regret guarantees against arbitrary opponents. Further, deviating to a
strategy with fewer constraints ΦA can often result in strictly improved reward for player A. As a concrete
application, we consider the question of deviating from simultaneous no-swap-regret play.

When is no-swap-regret play a stable equilibrium? What should you do if you know that your
opponent in a repeated game is running a no-swap-regret algorithm to select their actions? In [10], the
authors show that one utility-optimizing response (up to additive o(T ) factors) is to play a static (mixed)
strategy (your Stackelberg strategy) and obtain the Stackelberg value of the game. However, determining
your Stackelberg strategy requires some knowledge of the game, and acquiring this knowledge from repeated
play may be difficult (we address the latter issue in Section 5). In comparison, it is relatively straightforward
to also run a no-swap-regret learning algorithm. This begs the question: are there games where you obtain
significantly less utility (i.e., at least Ω(T ) less utility) by running a no-swap-regret learning algorithm instead
of playing your Stackelberg strategy?

We show that the answer is yes, such games exist and are relatively common. In fact, we provide
an efficient algorithmic characterization of the games G for which both players playing a no-swap-regret
learning algorithm is an (o(T )-)approximate Nash equilibrium of the entire repeated “meta-game”. The
exact characterization is presented in Section 3 and is somewhat subtle, e.g., there are slightly different
characterizations depending on whether we insist all pairs of no-swap-regret algorithms lead to approximate
equilibria or only one specific pair, corresponding to best-case and worst-case values in the generalized
equilibrium polytope. One consequence of both characterizations, however, is that for almost all games (in
a measure-theoretic sense, considering arbitrarily small perturbations), in order for it to be an approximate
equilibrium for both players to play a low-swap regret strategy, the game G must possess a pure Nash
equilibrium. That is, in any game without a pure Nash equilibrium, it is possible for at least one of the
parties to do significantly better by switching from no-swap-regret learning to playing their Stackelberg
strategy.

Finally, we additionally show there are some games where playing a no-(external)-regret algorithm against
another no-swap-regret learner weakly dominates playing a no-swap-regret algorithm, regardless of the spe-
cific choice of algorithms. This counters the intuition that stronger regret guarantees protect a player from
worse outcomes.

Optimizing reward against no-regret learners. What if our opponent is not running a no-swap-regret
algorithm, but simply a no-(external)-regret algorithm? In this case, it is still possible to obtain at least the
Stackelberg value of the game by playing our Stackelberg strategy (no-regret algorithms are also guaranteed
to eventually learn and play the best response to this strategy). However, unlike in the no-swap-regret setting,
there exist specific games and no-regret algorithms where it is possible to obtain significantly (Ω(T )) more
than the Stackelberg value by playing a specific dynamic strategy. This phenomenon was first observed in
[10], where a specific game is given for which it is possible to obtain Ω(T ) more than Stackelberg when playing
against any no-regret algorithm in the family of mean-based learning algorithms (including algorithms such
as multiplicative weights and EXP3). However, many questions remain unanswered, such as understanding
in which games it is possible to outperform playing one’s Stackelberg strategy, and by how much.

In Section 4 we present some answers to these questions for the case of generic no-regret algorithms.
Specifically, we first show that if player B is running (any) no-regret algorithm, the utility of player A
(regardless of what strategy they employ) is upper bounded by ValA (∅, E) · T + o(T ), where ValA (∅, E) is
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what we call the the unconstrained-external (equilibrium) value of the game for player A, which is given by
the solution to a linear program. We then show that this upper bound is asymptotically tight: there exists
a no-regret algorithm L such that if player B is playing according to L, then the player A can obtain utility
at least ValA (∅, E) · T − o(T ) by playing an appropriate strategy in response.

Note that this characterization does not completely resolve the question of [10] – it requires the construc-
tion of a fairly specific no-regret algorithm L, and it is still open what is possible against specific (classes of)
no-regret algorithms (e.g., multiplicative weights or mean-based algorithms). In fact, we show a property of
games which, when satisfied, implies that it is impossible to obtain the unconstrained-external value against
a mean-based learner.

Learning the Stackelberg strategy through repeated play. Finally, we address the question of how
hard it is to actually identify the Stackelberg strategy in a game against a learning opponent. Given full
knowledge of the game G, finding an agent’s Stackelberg strategy is simply a computational problem which
turns out to be efficiently solvable by solving several small LPs (see [6]). However, if the game (in particular,
the opponent’s reward matrix) is unknown, an agent must learn the Stackelberg strategy over time. Existing
work on learning Stackelberg strategies (e.g., [19, 24]) generally assumes access to a best-response oracle
for the game (i.e., for a specific mixed strategy, how will an opponent best-respond?). In contrast, if our
opponent is playing a specific no-regret learning algorithm, they may not immediately best respond to the
strategies we play! This raises the following two questions. First, when is it possible to learn the Stackelberg
equilibrium of a game while playing against a learning opponent? Second, is it easier to learn this equilibrium
when playing against certain classes of learning algorithms?

In Section 5 we begin by showing that it is indeed possible to convert any best-response query algorithm
for finding Stackelberg equilibria via best-response queries to an adaptive strategy that learns Stackelberg
equilibria via repeated play against a generic no-regret learner, albeit potentially at the cost of an exponential
blow-up in the number of rounds, e.g. for a query algorithm which makes Q best-response queries, simulating
it against a no-regret learner may require T = exp(Q) rounds of play. For the special case of opponents
with no-adaptive-regret algorithms (such as online gradient descent), we show that only T = poly(Q) rounds
are required in the worst case. However, in general we show that exponential runtime can be necessary.
In particular, we give an example of a game with M actions where it is possible to learn the Stackelberg
equilibrium in poly(M) rounds when playing against any no-swap-regret learning algorithm, but where it
requires at least exp(M) rounds to learn this equilibrium when playing a mean-based no-regret algorithms.

1.2 Related work

The broader literature on no-regret learning in repeated games is substantial, covering many equilibrium
convergence results varying assumptions. A recent line of work [5, 10, 21] considers problems related to
optimizing one’s reward when competing against a no-regret learner in a game. We extend these questions
to consider the relationship and regret for an optimizer, as well as to settings where properties of the game
are initially unknown, and give a series of separation results in terms of various notions of equilibrium. Also
relevant is the literature on analysis of no-regret trajectory dynamics, in particular [20] which shows a game
in which no-regret dynamics outperform the reward of the Nash equilibrium. Additionally, there is also
prior work considering regret minimization problems involving either best-responding or otherwise strategic
agents (see e.g. [3, 18]), as well as work considering alternate regret notions or behavior models for repeated
Stackelberg games (e.g. [12, 15]).

1.3 Notation and preliminaries

Throughout, we consider two-player bimatrix games G = (A,B), where player A (“the optimizer”) has
action set A = {a1, . . . , aM} and player B (“the learner”) has action set B = {b1, . . . , bN}. When the
optimizer plays action ai and the learner plays action bj , the players receive rewards uA(ai, bj) and uB(ai, bj),
respectively. We assume that the magnitude of each utility is bounded by a constant. The sets of mixed
strategies for each player are denoted by ∆(A) and ∆(B), respectively; when the optimizer plays a mixed
strategy α ∈ ∆(A) and the learner plays β ∈ ∆(B), the expected reward for the optimizer is given by

uA(α, β) =
∑M

i=1

∑N
j=1 αiβjuA(ai, bj), with uB(α, β) defined analogously. An action b ∈ B is a best response
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to a strategy α ∈ ∆(A) if b ∈ argmaxb′∈B uB(α, b
′). We let BR(α) be the set of all such actions for player B,

and likewise BR(β) for player A.

2 Generalized equilibria and no-Φ-regret learning

Here we introduce the notions of Φ-regret and generalized equilibria, which we use to analyze the regret
and reward of players in repeated bimatrix games under varying assumptions regarding the choice of regret
benchmarks, the algorithms used, and the structure of the game.

Originally introduced in [14] and extended to general convex settings in [13], we consider the formulation
of linear Φ-regret as it relates to bimatrix games. Given a sequence of action pairs (ai1bj1), . . . , (aiT bjT ) for
T > 0 and some set of functions Φ, where each f ∈ Φ maps actions A to action profiles in ∆(A), we say that
the Φ-regret for the optimizer (and analogously for the learner) is

RegΦ(T ) = max
f∈Φ

T
∑

t=1

uA(f(ait), bjt)− uA(ait , bjt).

Definition 1 (No-Φ-regret learning). We say a learning algorithm L is a no-Φ-regret algorithm if, for some
constant c < 1, we have that RegΦ(L, T ) = O(T c), where RegΦ(L, T ) is the Φ-regret corresponding to the
action sequence played by L.

Some notable sets of regret comparator functions Φ are the constant maps E (corresponding to exter-
nal regret), where all input actions are mapped to the same output action, and the “swap functions” I
(corresponding to internal regret1), which contain all single swap maps fij : [M ] → [M ] where f(i) = j
and f(i′) = i′ for i′ 6= i. Imposing these constraints on players in a game results in a (coarse) correlated
equilibrium, which are instances of our notion of generalized equilibrium.

Definition 2 (Generalized (ΦA,ΦB)-equilibria). A (ΦA,ΦB)-equilibrium ϕ ∈ ∆(A × B) in a two-player
game is a joint distribution over action profiles (a, b) such that player A cannot increase their expected
reward by deviating with some strategy in ΦA and player B cannot benefit by deviating with some strategy in
ΦB.

In contrast to the Φ-equilibria considered by [14, 13], here we allow constraints to be asymmetric between
players. While many equilibrium notions for two-player games impose symmetric regret constraints on
each player (e.g. Nash, correlated, and coarse correlated equilibria), this need not always be the case. In
Section 3, we highlight Stackelberg equilibria as a motivating example for considering more general notions
of asymmetric equilibria from the perspective of Φ-regret, to determine when one should deviate from
simultaneous no-swap play, and in Section 4 we characterize the maximum reward attainable against no-
regret learners in terms of asymmetric equilibria.

We say that the value of a game G for player A of a certain equilibrium class (ΦA,ΦB), denoted
ValA (ΦA,ΦB) is the maximum reward obtainable by player A at some (ΦA,ΦB)-equilibrium (with ValB (ΦA,ΦB)
defined symmetrically for player B). Likewise, we say that the min-value of a game for a player and an equi-
librium class, denoted by e.g. MinValA (ΦA,ΦB) for player A, is the minimum reward for a player over all
(ΦA,ΦB)-equilibria in a game. These capture the range of feasible average rewards under repeated play via
(ΦA,ΦB)-regret dynamics.

Proposition 1. For a repeated game over T rounds where player A uses a no-ΦA-regret algorithm and
player B uses a no-ΦB-regret algorithm, the average rewards obtained by each player are upper bounded by
ValA (ΦA,ΦB) + o(1) and ValB (ΦA,ΦB) + o(1), respectively, and lower bounded by MinValA (ΦA,ΦB)− o(1)
and MinValB (ΦA,ΦB)− o(1).

We consider an ε-approximate (ΦA,ΦB)-equilibrium to be a joint profile distribution where each con-
straint is satisfied up to additive error ε, connecting Definitions 1 and 2 as follows.

1We refer to internal and swap regret interchangeably, as our focus is primarily on rates with respect to T .
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Proposition 2 (Convergence of no-Φ-regret dynamics to generalized equilibrium). Suppose after T rounds
of a game where player A plays a no-ΦA-regret algorithm and player B plays a no-ΦB-regret algorithm, player
A has average ΦA-regret ≤ ε and player B has average ΦB-regret ≤ ε. Let ϕt := ptA × ptB denote the joint

distribution over both players’ actions at time t and ϕ := 1
T

∑T
t=1 ϕ

t denote the time-averaged history over
joint player action distributions. Then, ϕ is an ε-approximate (ΦA,ΦB)-equilibrium where

E
(a,b)∼ϕ

[uA (a, b)] ≥ E
(a,b)∼ϕ

[uA (fA(a), b)]− ε, and

E
(a,b)∼ϕ

[uB (a, b)] ≥ E
(a,b)∼ϕ

[uB (a, fB(b))]− ε

for every possible deviation fA ∈ ΦA, fB ∈ ΦB . Likewise, if players A and B repeatedly play strategies
corresponding to an (ΦA,ΦB)-equilibrium, then player A is no-ΦA-regret and player B is no-ΦB-regret.

A general construction for no-Φ-regret algorithms is given in [13], which immediately implies feasibility of
dynamics which converge to some instance of any class of (ΦA,ΦB)-equilibria in a game, possibly requiring
agents to use differing algorithms if constraints are asymmetric. We show that a much stronger claim is true:
such a pair of algorithms exists for any (ΦA,ΦB)-equilibrium Ψ in a game. These algorithms also satisfy a
“best-of-both-worlds” property, in that they converge to Ψ when played together, yet simultaneously maintain
their corresponding regret guarantees against arbitrary adversaries.

Theorem 1. Consider any game G. Suppose there exists a no-ΦA-regret learning algorithm LA and a no-
ΦB-regret learning algorithm LB. For any particular (ΦA,ΦB)-equilibrium Ψ in a game G, there exists a
pair of learning algorithms (L∗

A(Ψ),L∗
B(Ψ)) such that:

• The empirical sequence of play when Player A uses L∗
A(Ψ) and Player B uses L∗

B(Ψ) converges to Ψ.

• L∗
A(Ψ) and L∗

B(Ψ) are no-ΦA-regret and no-ΦB-regret, respectively, against arbitrary adversaries.

Our approach is for the algorithms to initially implement a schedule of strategies which converges to Ψ.
Yet, these algorithms also detect when their opponent disobeys the schedule by tracking their Φ-regret with
respect to Ψ, and after o(T ) violations can deviate indefinitely to playing a standalone no-Φ-algorithm for
all remaining rounds. Several of our results throughout make use of Theorem 1. Here we state a notable
immediate implication for equilibrium selection.

Corollary 1.1. For any equilibrium scoring function Γ : ∆(A×B) → R with a unique optimum computable
in finite time, there exists a pair of learning algorithms (L∗

A,L∗
B) such that:

• The empirical distribution when player A uses L∗
A and player B uses L∗

B converges to argmaxΨ Γ(Ψ).

• L∗
A and L∗

B are no-ΦA-regret and no-ΦB-regret, respectively, against arbitrary adversaries.

Proof. First optimize Γ over Ψ in finite time to find the unique optimum; then apply Theorem 1 to the
resulting desired equilibrium.

Corollary 1.1 allows for optimizing for objectives such as total welfare or min-max utility for both players,
and imposing conditions on generalized equilibria beyond Φ-regret constraints (e.g. product constraints for
Nash equilibria) by assigning arbitrarily low scores to invalid strategy profiles.

In subsequent sections, we will primarily focus the function classes E and I corresponding to external
and internal regret as mentioned above, as the well empty set ∅ corresponding to unconstrained regret, and
we additionally will consider the case when the game G is initially unknown. Before continuing, we note
that each player’s values for any (ΦA,ΦB)-equilibrium class can be expressed via a linear program, whose
size is polynomial in the game dimensions for these function classes of interest.

Proposition 3. For any game G and constraints (ΦA,ΦB), both ValA (ΦA,ΦB) and ValB (ΦA,ΦB) are
computable via linear programs with MN variables and poly(M,N, |ΦA| , |ΦB|) constraints. When ΦA and
ΦB belong to {∅, E , I}, the number of constraints is poly(M,N).

In general, these values for a player may differ under distinct notions of generalized equilibria; we give
several examples of such concrete value separations in Appendix A (in Theorem 8). Our results in Section
3 illustrate a particularly stark separation of this form, in which it can often be dominant to deviate to a
strategy where Φ-regret constraints are violated.
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3 Stability of no-swap-regret play

Here we address the following question: when is it the case that for two players in a game, it is an approx-
imate (Nash) equilibrium for both players to play no-swap-regret strategies? More specifically, imagine a
“metagame” where at the beginning of this repeated game, both players simultaneously announce and commit
to a specific adaptive (and possibly randomized) algorithm they intend to run to select actions to play in
the repeated game G for the next T rounds. In this metagame, for which games G is it an o(T )-approximate
Nash equilibrium for both players to play a no-swap-regret learning algorithm?

Of course, the answer to this question might depend on which specific no-swap-regret learning algorithm
the agents declare. We therefore attempt to understand the following two questions:

• Necessity: For which games G is it the case that there exists some pair of no-swap-regret algorithms
which form a o(T )-approximate Nash equilibrium? (Equivalently, when is it never the case that playing
no-swap-regret algorithms forms an approximate Nash equilibrium?)

• Sufficiency: For which games G is it the case that all pairs of no-swap regret algorithms form o(T )-
approximate Nash equilibria?

A central element of our analysis will be to consider the Stackelberg equilibria of a game.

Definition 3 (Stackelberg Equilibria). The Stackelberg equilibrium of a game G for player A is the pair
of strategies (α, b) given by argmaxα∈∆(A), b∈BR(α) uA(α, b), and the resulting expected utility for player A is
the Stackelberg value of the game, denoted StackA. StackB is defined symmetrically.

We can relate Stackelberg equilibria to our notions of generalized equilibria.

Proposition 4. For any game G, we have that StackA = ValA(∅, I).
Here, any joint distribution over action profiles where player B has zero swap regret constitutes a (∅, I)-

equilibrium for a game, and the optimal value for such an equilibrium for player A coincides with the
Stackelberg value. Further, each equilibrium set can be optimized over via a linear program.

Note that each value definition allows for tiebreaking in favor of player A. In general, simply playing
the Stackelberg strategy α may not suffice to obtain StackA if the best response for Player B is not unique.
However, there are a number of mild conditions which are each sufficient to ensure the existence of an
approximate Stackelberg strategy α′ which yields a unique best response for player B and obtains StackA −ε
for any ε > 0. Here we consider a minimal such condition (essentially, no action is weakly dominated without
also being strictly dominated).

Assumption 1. In a game G, for each b, either BR(α) = {b} for some α, or b /∈ BR(α) for all α. Likewise,
for each a, either BR(β) = {a} for some β, or a /∈ BR(β) for all β.

We provide an efficient algorithmic procedure to answer both questions of necessity and sufficiency for a
specific game G satisfying Assumption 1. To do this, recall that when two players both employ no-swap regret
strategies, they asymptotically (time-average) converge to some correlated equilibrium (here, corresponding
to an (I, I)-equilibrium). On the other hand, by defecting from playing a no-swap regret strategy (while the
other player continues playing their no-swap regret strategy), a player can guarantee their Stackelberg value
for the game. Moreover, as shown by [10], this is the optimal (up to o(T ) additive factors) best response
to an opponent running a no-swap regret strategy. It thus suffices to understand how the utility a player
might receive under a correlated equilibrium compares to the utility they receive under their Stackelberg
strategy. For a fixed game G, let StackA = ValA(∅, I) be the Stackelberg value for the first player, and
StackB = ValB(I, ∅) be the Stackelberg value for the second player. We have the following theorem.

Theorem 2. Fix a game G satisfying Assumption 1. The following two statements hold:

1. There exists some pair of no-swap-regret algorithms that form an o(T )-approximate Nash equilibrium
in the metagame iff there exists a correlated equilibrium ϕ in G such that uA(ϕ) = StackA and uB(ϕ) =
StackB.

2. Any pair of no-swap-regret algorithms form an o(T )-approximate Nash equilibrium in the metagame iff
for all correlated equilibria ϕ in G, uA(ϕ) = StackA and uB(ϕ) = StackB.
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Moreover, given a game G, it is possible to efficiently (in polynomial time in the size of G) check whether
each of the above cases holds.

We obtain both claims by leveraging the construction in Theorem 1: best-case and worst-case correlated
equilibria are feasible by some pair of no-swap-regret algorithms, and both players must simultaneously
achieve close to their Stackelberg value for deviating to not be preferable. The characterization in Theorem
2 is algorithmically useful, but sheds little direct light on in which games or how often we would expect
playing no-swap-regret to be an approximate equilibrium. It turns out that for many games, playing no-
swap-regret is not an equilibrium; below we will show that for almost all games, if G does not have a pure
Nash equilibrium, at least one player has an incentive to deviate to their Stackelberg strategy.

Definition 4. A property P of a game holds for almost all games if, given any game G, property P holds
with probability 1 for the game G′ formed by starting with G and perturbing each of the entries uA(ai, bj)
and uB(ai, bj) by independent uniform random variables in the range [−ε, ε] (for any choice of ε). In other
words, the property holds for almost all choices of the 2MN utility values that define a game (with respect
to the standard measure on this space).

Theorem 3. For almost all games G, if G does not have a pure Nash equilibrium, then there does not exist
a pair of no-swap-regret algorithms which form a o(T )-approximate Nash equilibrium in the metagame for
G.

Sketch. We can show that if a correlated equilibrium has the same utility for a player as their Stackelberg
value (a consequence of Theorem 2), then the correlated equilibrium must be a convex combination of valid
Stackelberg equilibria. In almost all games, both players have unique Stackelberg equilibria (and Assumption
1 holds), which implies that this correlated equilibrium must actually be the Stackelberg strategy for both
players simultaneously. This implies that it is a pure Nash equilibrium (since one action in a generic
Stackelberg equilibrium is always pure).

Note that although Theorem 3 holds for almost all games, there are some important classes of games
(most notably, zero-sum games) in the measure zero subset omitted by this theorem statement that both
a) do not have pure Nash equilibria and b) have the property that playing no-swap-regret algorithms is an
approximate equilibrium in the metagame (in particular, for zero-sum games, the Stackelberg value collapses
to the value of the unique Nash equilibrium). Still, Theorem 3 shows that there are very wide classes of
games for which playing no-swap-regret algorithms is not stable from the perspective of the agents.

Finally Theorem 3 requires that we deviate to our Stackelberg strategy, which may be hard to compute.
One can ask whether there are games where efficient deviations – e.g., to algorithms with weaker regret
guarantees – lead to strictly more utility for the deviating player. In Appendix B we show this is true in the
following sense: there are games G where ValA(E , I) > MinValA(E , I) = ValB(I, I). That is, in such a game
player A can possibly strictly increase their utility by switching to a low-external-regret strategy, and such
a switch will never decrease their utility.

4 Optimal rewards against no-regret learners

Here, we characterize the feasibility of optimizing one’s reward against no-(external)-regret learners in terms
of generalized equilibria. In contrast to the case of no-swap-regret learners, as shown by [10] there are games
in which one can obtain Ω(T ) more than the Stackelberg value over T rounds against certain no-regret
algorithms by playing an appropriate adaptive strategy. A major remaining open question from this line of
work is determining the best feasible reward and corresponding optimal strategy against no-regret agents
in arbitrary games. We resolve this question when considering the maximum over all possible no-regret
algorithms: for any game, we can compute an upper bound on the feasible reward against any no-regret
algorithm, and we show that there exists a specific no-regret algorithm against which we can obtain this
reward via an efficiently implementable strategy.

Theorem 4. For any game G, there exists a no-regret algorithm L and a strategy for player A such that
the total reward of player A converges to ValA (∅, E) · T ± o(T ) when player B uses L.
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Here we again make use of the construction from Theorem 1. Note that by Proposition 1, this is
optimal over all no-external-regret algorithms, as any adaptive strategy constitutes a no-∅-regret algorithm.
By Proposition 3 we can identify the optimal (∅, E)-equilibrium in poly(M,N) time, which is sufficient to
implement the algorithm L as well as our own strategy efficiently.

However, we additionally show that this bound is often unattainable against many standard no-external-
regret algorithms. A property of many such algorithms (including Multiplicative Weights, Follow the Per-
turbed Leader, and Exp-3) is that they are mean-based, as formulated by [5].

Definition 5 (Mean-based learning). Let σi,t be the cumulative reward resulting from playing action i for
the first t rounds. An algorithm L is γ-mean-based if, whenever σi,t ≤ σj,t − γT , the probability that the
algorithm selects action i in round t+ 1 is at most γ, for some γ = o(1).

These algorithms resemble “smoothed” variants of Follow the Leader; they only play actions with proba-
bility higher than o(1) if their cumulative reward thus far is not too far from optimal, and hence never play
dominated strategies. However, in general, (∅, E)-equilibria may contain dominated strategies, as is also the
case for coarse correlated equilibria. This allows us to show the following.

Theorem 5. Against any mean-based no-regret algorithm for player B, there are games where a T -round
reward of (ValA(∅, I)+ε) ·T cannot be reached by any adaptive strategy for player A, for any ǫ > 0. However,
for this same game, ValA(∅, E) > ValA(∅, I).

In the appendix, we introduce a notion of “dominated-swapping external regret” which we use to charac-
terize a class of games for which this holds, and we give a concrete example of such a game.

5 Learning Stackelberg equilibria in unknown games

Our results thus far have highlighted the primacy of the Stackelberg reward as an objective for repeated
play against a learner: it is optimal against a no-swap learner and can sometimes be optimal against a mean-
based learner, and it is almost always attainable against any learner. However, until now our strategies
have assumed knowledge of the entire game, which may be unrealistic in many settings for which learning
in games is relevant, particularly in terms of our opponent’s rewards.

Here, we consider the challenge of learning the Stackelberg strategy via repeated play against a no-regret
learner when only our own rewards are known, which is unaddressed in the literature to our knowledge; much
of the prior work on learning Stackelberg equilibria assumes a query model, where one can observe the best
response BR(α) played by an opponent for any queried mixed strategy α. While here we cannot immediately
observe the best response of an opponent, as their actions are selected by a learning algorithm which may
be slow to adapt to changes in our behavior, we give a reduction from query algorithms of this form to
strategies for choosing our actions which enable us to simulate queries to BR(α) against a learner, and we
analyze the efficiency of this approach (in terms of rounds required for learning) under differing assumptions
on the learner’s algorithm.

For comparison of behavior across time horizons of varying lengths, it will be convenient for us to consider
the notion of an anytime regret bound, which can be obtained from any base no-regret algorithm via doubling
methods, as well as often via learning rate decay.

Definition 6 (Anytime regret algorithms). An algorithm is an anytime no-Φ-regret algorithm if satisfies
RegΦ(t) = O(tc) over the first t rounds, for some c < 1 and any t ≤ T .

We also recall the notion of adaptive regret; many no-external-regret algorithms such as Online Gradient
Descent satisfy no-adaptive-regret bounds (see e.g. [25]).

Definition 7 (Adaptive regret algorithms). An algorithm L for player B is a no-adaptive-Φ-regret algorithm
if supr,s∈[T ] RegΦ(L, [r, s]) ≤ O(T c), for some c < 1, where RegΦ(L, [r, s]) = maxf∈Φ

∑s
t=r uB(ait , f(bjt)) −

uB(ait , bjt).

A key distinction between adaptive-regret algorithms like OGD and mean-based algorithms like FTPL
is in in their “forgetfulness”, and hence their ability to quickly adapt when rewards change. This has stark
implications for the efficiency of learning Stackelberg equilibria, which we show can take exponentially longer
against mean-based algorithms. As shown by [25], adaptive regret is closely connected with dynamic regret;
we note that our results for adaptive-regret learners can also be extended to dynamic-regret learners.
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5.1 Simulating query algorithms

Our approach will be to compute an ε-approximate Stackelberg strategy by simulating best response queries
against a learner, after which point we can obtain an average reward approaching StackA −ε in each subse-
quent round, calibrating ε in terms of T as desired. The query complexity for such algorithms can depend
on the geometry of the best response regions of the game, and unfortunately, as shown by [24], there are
“hard” game instances which require exponentially many queries. This issue arises when the best response
regions may be quite small but non-empty, as even finding a point in each region is information-theoretically
difficult. We restrict our attention to games in which this does not occur, and fortunately efficient query do
algorithms exist for this case.

Assumption 2. For a game G and any action bi, we have that

Pr
α∼Unif(∆(M))

[bi ∈ BR(α)] ∈ {0} ∪ [1/ poly(ε−1), 1],

i.e. the volume of each BR region is either 0 or inverse polynomially large.

Proposition 5 ([19, 24]). For a game G satisfying Assumption 2, there is an algorithm which finds an
ε-approximate Stackelberg strategy for player A with Q = poly(M,N, 1/ε) queries to BR(α).

We note that while such algorithms can indeed obtain tighter approximation guarantees in terms of ε
(e.g. O(log(1/ε))), the query complexity is still inverse polynomially related to the best response region
volumes; we consider only ε-approximate equilibria due to challenges which are inherent to the no-regret
learning setting, as the precision with which we can simulate a query is constrained by our time horizon.
The key to our approach is to play according to a mixed strategy α until it saturates the relevant window
of the learner’s history, which induces them to play a best response. Against no-adaptive-regret learners,
a best response will be induced quickly, as their regret is bounded even over small windows. However, for
arbitrary no-regret learners, we have no promises other than the cumulative regret bound, which may require
saturating the entire history for each query.

Theorem 6. Suppose E ⊆ Φ. For a game satisfying Assumption 2, there is an algorithm which finds
an ε-approximate Stackelberg strategy in poly(1/ε)Q rounds against any anytime-no-Φ-regret learner, and in
poly(Q/ε) rounds against any no-adaptive-Φ-regret calibrated for T = Θ(poly(Q/ε)), where Q = poly(M,N, 1/ε).

5.2 Efficiency separations for mean-based and no-swap algorithms

We show here that the exponential dependence for mean-based algorithms is necessary: there exist games
where learning the Stackelberg strategy requires exponentially many rounds against a particular mean-based
algorithm. However, for the games we construct, we show that it is still possible to efficiently learn the
Stackelberg strategy against a no-swap-regret learner.

Theorem 7. There is a distribution over games D such that for a sampled game G:

• For any no-swap-regret learner used by the opponent, there is a strategy for the leader which yields an
average reward of StackA −ε in T = poly(M/ε) rounds.

• There is a mean-based no-regret algorithm such that, when used by the opponent, there is no strategy
for the leader which yields an average reward of StackA −ε over T rounds unless T = exp(Ω(M)).

Our construction includes a set of actions for player B which are best responses to pure actions from
player A, and one such pure strategy pair will necessarily constitute the Stackelberg equilibrium; identifying
each best response suffices for player A to identify the Stackelberg strategy. The game also includes a
number of safety actions for player B, which yield no reward for player A with any strategy, yet allow player
B to “hedge” between multiple actions of player A. This poses a barrier to optimizing against a mean-based
learner: the history must be heavily concentrated on a single action to observe the best response, and as such
the history length must grow by a constant factor for each observation. However, against a no-swap-regret
learner, it suffices for the optimizer to only play each action for a polynomially long window in order to
identify the learner’s best response; we track the accumulation of a “swap-regret buffer” for any other action
and show that it cannot be too large, limiting the number of rounds it can be played when it is not a current
best response.
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A Properties and separations for generalized equilibria

A.1 Proof of Proposition 1

Proof. The set of (ΦA,ΦB)-equilibria includes all strategy profile distributions in which both constraints are
satisfied. If a player receives substantially more or less than the corresponding value, this would imply a
violation of the regret constraints for at least one of the players’ learning algorithms.

A.2 Proof of Proposition 2

Proof. The statement follows by observing that

E
(a,b)∼ϕ

[

u{A,B} (a, b)
]

=
1

T

T
∑

t=1

E
(a,b)∼ϕt

[

u{A,B} (a, b)
]

E
(a,b)∼ϕ

[uA (fA(a), b)] =
1

T

T
∑

t=1

E
(a,b)∼ϕt

[uA (fA(a), b)]

E
(a,b)∼ϕ

[uB (a, fB(b))] =
1

T

T
∑

t=1

E
(a,b)∼ϕt

[uB (a, fB(b))]

which in turn are equivalent to the time-averaged utility of the play of players A and B, the time-averaged
utility for player A under a deviation fA, and the time-averaged utility for player B under a deviation
fB. Applying the definition of average Φ-regret and applying the given bounds on the Φ-regret yields the
conclusion of the first direction. The reverse direction follows by reversing the steps.

A.3 Proof of Proposition 4

Proof. Observe that under any strategy (α, b) where b ∈ BR(α), player B cannot have any swap-regret,
and so any Stackelberg equilibrium is also a (∅, I)-equilibrium. Further, the marginal distributions over
the optimal (∅, I)-equilibrium for player A over each bi cannot have distinct expected value for player A, as
otherwise this would contradict optimality, and so an optimal (∅, I)-equilibrium is either a single Stackelberg
equilibrium or a mixture of Stackelberg equilibria with equal value.

A.4 Proof of Proposition 3

Proof. By definition, the set of (ΦA,ΦB)-equilibria ϕ is a sub-polytope of ∆(A×B) defined via the following
linear constraints:

• For each fA ∈ ΦA, we have that

∑

i∈[M ]

∑

j∈[N ]

ϕij uA(ai, bj) ≥
∑

i∈[M ]

∑

j∈[N ]

ϕij uA(af(i), bj).

• For each fB ∈ ΦB , we have that

∑

i∈[M ]

∑

j∈[N ]

ϕij uB(ai, bj) ≥
∑

i∈[M ]

∑

j∈[N ]

ϕij uB(af(i), bj).

The value ValA(ΦA,ΦB) corresponds to the element ϕ of this polytope that maximizes
∑

i∈[M ]

∑

j∈[N ] ϕij uA(ai, bj).

Optimizing this linear function over the above polytope can be done in time poly(M,N, |ΦA |, |ΦB |) via any
linear program solver. Computing ValB(ΦA,ΦB) can be likewise done efficiently.

For player A, the regret comparator function sets ∅, E , and I contain 0, M , and M2 elements respectively.
In all three of these cases |ΦA | = poly(M); likewise, in all three of these cases |ΦB | = poly(N) (and thus
we can efficiently compute these values when ΦA,ΦB ∈ {∅, E , I}).
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A.5 Reward separations

We show that with respect to optimal values, these equilibrium classes are often distinct, and there exist
games where values do not collapse. The separations we show here consider the equilibrium cases either
where both players have identical regret constraints, or where player A is unconstrained. We note that while
inspecting other cases, we identified similar examples for several other generalized equilibrium pairs, and we
expect that strict separations exist between any distinct pair of generalized equilibria for the three regret
notions we consider, in any direction not immediately precluded by the regret constraints. We are mostly
interested in cases where B is constrained, and A may be constrained or unconstrained.

Theorem 8. For each of the following, there exists a 4× 4 game G with rewards in {0, 1, 2} where:

1. ValA (∅, E) > ValA (∅, I) > ValA (E , E) > ValA (I, I)

2. ValA (∅, E) > ValA (E , E) > ValA (∅, I) > ValA (I, I)

Proof. We prove both results by exhibiting a game with the desired chain of inequalities, which we found by
searching random examples of 4 × 4 games with values constrained in {0, 1, 2} and computing the various
values of the games with a linear programming library. The numerical values are easy to check with compu-
tation. The game G1 := (MA1

,MB1
) satisfies the conditions for the first chain of inequalities, and the game

G2 := (MA2
,MB2

) satisfies the conditions for the second chain of inequalities. First we instantiate the game
G1:

MA1
:=









1 0 0 0
1 0 0 1
2 2 0 2
0 2 0 0









MB1
:=









0 2 0 0
1 1 1 0
1 0 2 0
1 0 0 1









The corresponding values for game G1 are simple to check:

1. ValA (∅, E) = 8/5.

2. ValA (∅, I) = 4/3.

3. ValA (E , E) = 1.

4. ValA (I, I) = 0.

Then we instantiate the game G2:

MA2
:=









2 0 1 0
2 1 1 0
0 2 1 2
2 0 2 1









MB2
:=









1 0 1 2
0 1 2 0
1 0 2 0
0 2 1 1









The corresponding values for game G2 are simple to check:

1. ValA (∅, E) = 13/7.

2. ValA (E , E) = 12/7.

3. ValA (∅, I) = 5/3.

4. ValA (I, I) = 4/3.
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B Deviation to weaker regret classes

In Section 3, we show that if two players are playing no-swap-regret strategies against one another, it is
often in the interest of each player to switch to playing their Stackelberg strategy (in particular, this is
true whenever the game does not have a pure Nash equilibrium). However, as we later argue, learning ones
Stackelberg strategy in such a game can be difficult. It is therefore natural to ask whether there are beneficial
deviations to computationally efficient strategies. In particular, is it ever in a player’s interest to weaken their
regret benchmark, and e.g. switch from playing a no-swap-regret strategy to a no-external-regret strategy?

We give an example showing this is true in a fairly strong sense: we exhibit a game G where if player
A switches from playing a no-swap-regret algorithm to any no-external-regret algorithm, their asymptotic
utility never decreases and sometimes strictly increases – i.e., there is no downside to switching to an external
regret algorithm (and potentially a high upside). We have the following theorem.

Theorem 9. There exists a game G where MinValA(E , I) ≥ ValA(I, I) and ValA(E , I) ≥ ValA(I, I).
Proof. Consider the game G specified by the two payoff matrices

MA :=





0 0 2
0 0 1
0 1 1



 MB :=





2 1 1
0 2 1
0 0 2



 .

The corresponding values for this game are simple to compute:

1. ValA(I, I) = MinValA(I, I) = 0.

2. MinValA(E , I) = 0.

3. ValA(E , I) = 1.

C Proof of Theorem 1

Proof. Let ϕ be the joint distribution over action pairs corresponding to Ψ. Let T denote the total number
of steps we run the algorithm for; we will use t ≤ T as a changing step size. Suppose both player A and
player B know ϕ2. We will define L∗

A(Ψ) and L∗
B(Ψ) in two phases: in the first phase, A and B trust their

opponent and play according to deterministic sequences corresponding to approximations of ϕ. If either
player violates the other’s trust o(T ) times, then the player defects to playing LA or LB respectively forever
after.

First we elaborate upon the trusting phase. Both players consider windows of length Length(t) which
is monotonically increasing in t and also which grows sub-linearly in t. For concreteness, we pick a sub-
linear monotonic increasing growth rate of O(

√
t) and describe how to implement the schedule of window

lengths. We can keep track of a real-valued variable Zt with Z1 = M ·N , and after each window completes,
update it by Ztnext

= Zt +
1

2
√
t

where t is the step at the end of the window. To get an integral window

length, we define Length(t) := ⌊Zt⌋. Thus in this case, the Length(t) grows as O(
√
t), satisfying both

conditions. Both players then compute a weighting instantiated with pairs of pure strategies by assigning
ci := ⌊Length(t) · ϕi⌋ example pairs (each of weight 1/ Length(t)) to pure strategy pair i ∈ [M · N ]. This
weighted distribution approximates ϕ given Length(t) samples. Note that the rounding approximation is

feasible given only Length(t) samples since
∑M·N

i=1 ci ≤ Length(t). These pure strategy pair samples are then
lexicographically ordered. Then, both players act according to the pure strategies in order, thereby (over
the window) achieving an (M ·N)/ Length(t) ℓ1 approximation to ϕ:

M·N
∑

i=1

∣

∣

∣

∣

ϕi−
ci

Length(t)

∣

∣

∣

∣

=

M·N
∑

i=1

∣

∣

∣

∣

ϕi−
⌊Length(t) · ϕi⌋

Length(t)

∣

∣

∣

∣

≤ M ·N
Length(t)

.

2ϕ can be communicated from Player A to Player B during a burn-in phase of length > M ·N , the dimension of the discrete

joint distribution over pure player strategy pairs.
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This process repeats for every window.
The distrustful phase occurs if one of the players does not follow the agreed-upon instructions Tdistrust

times, where Tdistrust is taken to be o(T ). After this many violations, Player A defaults to playing LA and
likewise Player B defaults to playing LB ever after.

We now show that this algorithm satisfies both conditions in the theorem statement. First, if both players
use L∗

A(Ψ) and L∗
B(Ψ), the play converges to ϕ, the joint distribution of play corresponding to Ψ. This point

is immediate to observe since (M ·N)/ Length(t) → 0 as t → ∞ as Length(t) is monotone increasing in t.
Now we prove that both players are no-Φ-regret with respect to any adversary. First we show no-Φ-

regret for both players in the case where Player A plays L∗
A(Ψ) and Player B plays L∗

B(Ψ). Let ϕ̂t be
the approximation to ϕ implemented over the window corresponding to final step t, and suppose that
‖ϕ−ϕ̂t‖1 < εt. Recalling the proof of Theorem 1, for Player A (and analogously for Player B) we can bound

∣

∣

∣

∣

E
(a,b)∼ϕ

[uA (a, b)]− E
(a,b)∼ϕ̂

t

[uA (a, b)]

∣

∣

∣

∣

=
∣

∣

∣
(ϕ−ϕ̂t)

⊤ uA

∣

∣

∣

≤ ‖ϕ−ϕ̂t‖1 · ‖uA‖2 ≤ εt · C ·
√
M ·N,

where here we interpret ϕ, ϕ̂t, uA, uB ∈ R
M×N as vectors over the space of all action pairs. Thus for this

particular window, the overall gap from the expected reward for ϕ is εt · C ·
√
M ·N .

Then we can similarly upper bound E(a,b)∼ϕ̂
t
[uA (fA(a), b)] ≤ E(a,b)∼ϕ [uA (fA(a), b)] + εt ·C ·M

√
N for

any choice of fA ∈ ΦA:

(∗) =
∣

∣

∣

∣

E
(a,b)∼ϕ

[uA (fA(a), b)]− E
(a,b)∼ϕ̂

t

[uA (fA(a), b)]

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

M
∑

k=1

N
∑

j=1

(ϕ̂t(k, j)− ϕ(k, j)) ·
M
∑

i=1

fA(ak)i · u(·, bj)

∣

∣

∣

∣

∣

∣

≤ ‖ϕ−ϕ̂t‖1 · ‖
[

fA(a1)
⊤uA(·, b1), · · · , fA(aM )⊤uA(·, bN)

]

‖2
≤ εt ·

√
M ·N ·max

k,j
‖fA(ak)‖2 · ‖uA(·, bj)‖2

≤ εt ·
√
M ·N · 1 ·

√
M · C2

= εt ·M ·
√
N · C.

Then recall that εt ≤ M·N
Length(t) . Thus, overall, the average regret using due to the window is bounded by

1

Length(t)
RegΦ(ϕ̂t, t) ≤

1

Length(t)
RegΦ(ϕ, t) + C2 ·

1

Length(t)
,

where C2 is another constant depending on C,M,N and where we use the shorthand RegΦ(·, t) to denote
the Φ-regret over the window ending in step t. Now call ϕ̂ the strategy where the joint distribution ϕ̂t as
previously defined gets played in each window t. Now we can bound the total Φ-regret for ϕ̂ by the sum of the
Φ-regrets for each window (maximizing fA ∈ ΦA over the steps in each window makes it more competitive
than optimizing only one fA over the whole length T sequence). Thus for total Φ-regret, we have:

RegΦ(ϕ̂, T ) ≤ RegΦ(ϕ, T ) + NumWindows(T ) · C2 ≤ RegΦ(ϕ, T ) + o (T ) ,

where

NumWindows(T ) := min∑
k

t=1
Length(t)≥T

k.

The last step follows since NumWindows(T ) ≤ o(T ), because Length(T ) ≤ o(T ).
Since we already know that the strategy ϕ is no-Φ-regret and Length(T ) is o(T ), we have proven that

playing ϕ̂ is no-Φ-regret in the case where Player A plays L∗
A(Ψ) and Player B plays L∗

B(Ψ).
The second case where the opposing player does not cooperate is easier: after at most o(T ) steps, the

player switches to an algorithm LA or LB respectively which is no-Φ-regret and incurrs only o(T ) additional
regret. Thus the theorem statement holds.
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D Proof of Theorem 2

Proof. We begin with the first claim. To prove the forward direction, if there exists such a ϕ, then choose
a pair of low-swap-regret algorithms (LA,LB) such that the time-averaged trajectory over T rounds is
guaranteed to asymptotically converge to ϕ (this is possible by either the results of [11], or our Theorem 1).
That is, if the two players play strategy ϕt at round t ∈ [T ], then ϕ̂ = 1

T

∑

t ϕt satisfies ||ϕ̂ − ϕ ||∞ = o(1).
It follows that

∑

t uA(ϕt) ≥ T ·uA(ϕ)− o(T ) = T ·StackA −o(T ) and therefore player A has at most an o(T )
incentive to deviate (by [10], they can obtain at most StackA T + o(T ) against LB). Symmetric logic holds
for player B.

To prove the reverse direction, assume LA and LB are no-swap-regret algorithms such that (LA,LB) is
an o(T )-approximate Nash equilibrium in the metagame. Since they are no-swap-regret, the time-averaged
play of these two algorithms for T rounds must converge to an o(1)-approximate correlated equilibrium
ϕ̂T ; moreover, since (LA,LB) is an o(T )-approximate Nash equilibrium, ϕ̂T must have the property that
uA(ϕ̂T ) ≥ StackA −o(1) and uB(ϕ̂T ) ≥ StackB −o(1). Taking the limit as T → ∞ and selecting a convergent
subsequence of the ϕ̂T , this shows there must exist a correlated equilibrium ϕ with the desired properties.

Likewise, similar logic proves the second claim with the following modifications. In the forward direction,
we can now choose any pair of low-swap-regret algorithms (LA,LB), and any correlated equilibrium ϕ they
asymptotically converge to is guaranteed to have the property that uA(ϕ) = StackA and uB(ϕ) = StackB. In
the reverse direction, since any correlated equilibrium is implementable by some pair of low-regret algorithms
(again, by Theorem 1), the same logic shows that all correlated equilibria ϕ must satisfy uA(ϕ) = StackA
and uB(ϕ) = StackB.

Finally, to see that these two conditions are efficiently checkable, note that: i. the two values StackA and
StackB are efficiently computable given the game G, and ii. the set of correlated equilibria ϕ form a convex
polytope defined by a small (poly(N,M)) number of linear constraints (see Proposition 3). In particular,
since uA(ϕ) and uB(ϕ) are simply linear functions of ϕ for a given game G, we can efficiently check whether
there exists any point in this polytope where uA(ϕ) = StackA and uB(ϕ) = StackB.

E Proof of Theorem 3

Proof. We will show that (for almost all games G) if there is a correlated equilibrium ϕ such that uA(ϕ) =
StackA and uB(ϕ) = StackB, then there exists a simultaneous unique Stackelberg equilibrium for both
players in G, which must be a pure Nash equilibrium. Combined with Theorem 2, this implies the theorem
statement.

We will rely on the following fact: in almost all games G, both players have a unique Stackelberg strategy.
To see this, consider the following method for computing A’s Stackelberg strategy. For each pure strategy bj
for player B, consider the convex set Aj ⊆ ∆(A) containing the mixed strategies for player A which induce
bj as a best response (i.e., Aj = {α ∈ ∆(A) | bj ∈ BR(α)}). Then, for each j ∈ [N ], compute the strategy
αj ∈ Aj which maximizes uA(αj , bj). The Stackelberg value StackA is then given by maxj uA(αj , bj). In
order for this to stem from a unique Stackelberg equilibrium, it is enough that: 1. the maximum utility is
not attained by more than one j, and 2. for each j, the optimizer αj ∈ Aj is unique.

These two properties are guaranteed to hold in almost all games. To see this, first note that the convex
sets Aj are determined entirely by the utilities uB, so we will treat these as fixed. Now, given any convex
set Aj , the extremal point in a randomly perturbed direction will be unique with probability 1 – but since
αj is simply the extremal point of Aj in the direction specified by uA(·, bj) (which is a randomly perturbed
direction), so αj is unique in almost all games. Finally, if we perturb the magnitude of each of the utilities
uA(·, bj) (keeping the direction the same), the maximizer maxj uA(αj , bj) will also be unique almost surely.

Let (αA, bA) be the Stackelberg equilibrium for player A and let (aB, βB) be the Stackelberg equilibrium
for player B. Now, consider the aforementioned correlated equilibrium ϕ ∈ ∆(A × B). We will begin by

decomposing it into its marginals based on its first coordinate; that is, we will write ϕ =
∑M

i=1 λi(ai, βi) for
some mixed strategies βi ∈ ∆(B) and weights λi (with

∑

i λi = 1). By the definition of correlated equilibria,
note that each ai belongs to BR(βi). But this means that uB(ai, βi) ≤ StackB , with equality holding iff
(ai, βi) = (aB , βB) (due to uniqueness of Stackelberg). Therefore, in order for uB(ϕ) = StackB, we must
have that ϕ = (aB, βB). By symmetry, we must also have that ϕ = (αA, bA). If both these are true, then ϕ
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is a pure strategy correlated equilibrium of the game, and is hence a pure strategy Nash equilibrium (and
moreover, is also the Stackelberg equilibrium for both A and B).

F Proof of Theorem 4

Proof. By Theorem 1, there is a pair of ∅-regret and E-regret algorithms L∗
A and L∗

B which converge to
a (∅, E)-equilibrium for which player A obtains ValA(∅, E). By Proposition 1, this is optimal over all no-
external-regret algorithms, as any adaptive strategy constitutes a no-∅-regret algorithm. By Proposition
3 we can identify the optimal (∅, E)-equilibrium in poly(M,N) time, which is sufficient to implement the
algorithms L∗

A and L∗
B efficiently for any desired T .

G Dominated-swapping external regret bounds for mean-based al-

gorithms

For the following proof (of Theorem 10), we introduce the following notion of dominated-swapping external
regret, a tighter upper bound on the behavior of mean-based algorithms than the standard no-external-regret
guarantee.

Definition 8 (Dominated-swapping external regret). For a game G, let D(G) be the set of dominated
strategies for player B, i.e. bi ∈ D(G) if bi /∈ BR(α) for all α ∈ ∆(M). For j, k ∈ [N ] define gjk(bi) as:

gjk(bi) =

{

bj bi /∈ D(G)

bk bi ∈ D(G)

i.e. gjk(bi) swaps bi to bk if bi is dominated and plays bj otherwise. Let ED(G) = {gjk : j, k ∈ [N ]} be the set
of dominated-swapping external regret comparators.

This definition leads to the following tighter upper bound on what is achievable against a mean-based
no-regret algorithm.

Theorem 10. For any game G and any mean-based no-regret algorithm used by player B, there is no strategy
for which the average reward of player A converges to ValA (∅, ED(G)) + ε, for any ε > 0.

Proof. First, we observe that mean-based algorithms will never play a dominated strategy bi ∈ D(G) in
more than o(T ) rounds. As bi is dominated, there is some δ > 0 such that for every α ∈ ∆(M), there is
some bj where uB(α, bj) ≥ uB(α, bi) + δ. Let αt denote the empirical distribution of player A’s actions up
to time t. After some window of O(γT ) = o(T ) rounds we will have the cumulative rewards σi,t and σj,t

satisfy σi,t < σj,t − δt < σj,t − γT under any αt for some bj in each subsequent round, and so bi will never
be played in more than o(T ) rounds.

We can also see that any such no-E-regret algorithm is a no-ED(G)-regret algorithm. Suppose such an
algorithm had ED(G)-regret ǫT , for ǫ > 0; then, there is some gjk for which UB(αT , gjk(βT )) ≥ UB(αT , βT )+ǫ.
By the E-regret guarantee this cannot occur if j = k, as any such function gjj is equivalent to the fixed
deviation rule for bj . However, if this occurs for j 6= k, such an algorithm must have played dominated
strategies in a total Ω(ǫT ). This contradicts our assumption that no dominated strategy bi is played in more
than o(T ) rounds, and so any mean-based no-E-regret algorithm is also a no-ED(G)-regret algorithm, against
which player A cannot obtain average reward which converges to any amount higher than ValA (∅, ED(G)) +
o(1).

H Proof of Theorem 5

Proof. Let MBRewA denote the maximal reward obtainable by player A when player B uses a mean-based
algorithm. Observe that b3 is dominated for player B, and thus cannot be included in any (∅, I)-equilibrium
(by Theorem 10). Further, it will never be played by a mean-based learner for more than o(T ) rounds, as for
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b1 b2 b3
a1 1, 1 0, 0 3, 0
a2 0, 0 1, 1 0, 0

Figure 1: Game where ValA (∅, E) > ValA (∅, I) = MBRewA

any distribution over a1 and a2 the best response is either b1 or b2. As such, both ValA (∅, I) and MBRewA

are at most 1 + o(1); a reward of 1 − o(1) is obtainable by committing to either a1 or a2 for each round.
However, we can see that the optimal (∅, E)-equilibrium p for player A includes positive mass on (a1, b3),
and yields an average reward of ValA (∅, E) = 2 for player A. Let p1 be the probability on (a1, b1), let p2 be
the probability on (a2, b2), let p3 be the probability on (a1, b3), and let p0 be the remaining probability. The
reward for player A is given by:

RewA(p) = p1 + p2 + 3p3

and p defines a (∅, E)-equilibrium if
RewB(p) ≥ RewB(p → bi)

for each bi, which holds if:

p1 + p2 ≥ p1 + p3;

p1 + p2 ≥ p2;

p1 + p2 ≥ 0.

Only the first constraint is non-trivial, and so the optimal (∅, E)-equilibrium for player A occurs by maximiz-
ing p1 + p2 + 3p3 subject to p2 ≥ p3, which yields a probability of 0.5 for both p2 and p3 (and 0 for p1 and
p0), as well as an average reward of 2. As such, player A cannot obtain a reward approaching ValA(∅, E), as
their per-round reward is at most 1 + o(1).

I Proof of Theorem 6

Proof. We recall that the SU algorithm from [19] finds initial points α∗(bi) in each best response region
via random sampling, which takes takes 1/ poly(ε−1) queries in expectation. Then, upon calibrating for
O(log(1/ε)) bits of precision SU makes poly(M,N, log(1/ε)) queries, each of which can be taken to be a
point on some grid of spacing 1/ poly(ε−1) within the simplex by the precision condition. The computed
approximate Stackelberg strategy is then the optimal such point on the grid.

We first describe our strategy for simulating each query against an arbitrary anytime-no-regret learner;
as E ⊆ Φ, we can restrict to considering only no-external-regret learners, as these regret constraints will
always be satisfied. To implement a query q, greedily play the action whose historical frequency of play is
the furthest below its target frequency in q. After O(poly(1/ε)) rounds, the historical distribution will be
within 1/ poly(ε−1) of q, and continuing the greedy selection strategy indefinitely will ensure that the history
remains in a 1/ poly(ε−1)-ball around q. Let tq be the time at which this occurs. After maintaining the
greedy strategy for q for an additional ω(tcq) rounds, the anytime regret bound ensures that most frequently
played item must indeed be the best response response to some point in the ball around q, provided that this
ball is contained entirely inside some best response region Rj . For the sampling step, a taking sufficiently
small grid (but still 1/ poly(ε−1)) ensures that random sampling still suffices to find a point a point in each
best response region even if our queries may be adversarially perturbed to neighboring points on the grid, as
each region is convex and has volume at least 1/ poly(ε−1). To address the issue for the line search steps, it
suffices to take an additional step along each search conducted by SU before termination, where we then take
each hyperplane boundary estimate to be one step inward along the grid from where our search terminates,
maintaining a buffer between each hyperplane estimate in which all our points of uncertainty must lie. This
adds at most a constant factor to our query complexity, and impacts our approximation by 1/ poly(ε−1),
which then yields us a runtime of poly(1/ε)Q rounds.

For the case of a no-adaptive-regret learner, suppose such an algorithm is calibrated for T = O(QC1(1/ε)C2);
then, over any window of length W its regret is at most O

(

(QC1(1/ε)C2)cW−1
)

. Taking W = ω((QC1(1/ε)C2)c)
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yields a per-round regret of at most o(1) over the window, and so an algorithm must play a best response
in W − o(W ) of the rounds. For sufficiently large C1 and C2, each W is large enough to yield the same
precision we required for the anytime case, where now we greedily play the action whose frequency is furthest
below its target since our previous query terminated, which allows us to again simulate the O(Q) queries in
poly(Q/ε) rounds (accounting for the robustness checks) while yielding Θ(WQ) = o(T ).

J Proof of Theorem 7

Proof. Our game consists of M actions A for the optimizer, and N = 2M +
(

M
2

)

actions for the learner,

which are divided into M primary actions B, M secondary actions S, and
(

M
2

)

safety actions Y.
If we restrict the learner to only playing primary actions, the game somewhat resembles a coordination

game, where each pure strategy pair (aj , bj) is a Nash equilibrium. However, the set B is comprised of both
undominated actions BU and dominated actions BD, which are unknown to the optimizer, and where each
bj ∈ Bd is weakly dominated by the secondary action sj . The optimizer receives reward 0 whenever the
learner plays a secondary action, and so the challenge for the optimizer is to identify the pair (aj , bj) which
maximizes uA(aj , bj), for bj ∈ BD, which will be the Stackelberg equilibrium. Further, the safety actions
yij essentially allow the learner to hedge between two actions; this does not pose substantial difficulty for
the optimizer when the learner is no-swap-regret, yet creates an insurmountable barrier for learning the
Stackelberg equilibrium in sub-exponential time against a mean-based learner.

An instance of a game G ∈ G is specified by the partition of B into BU and BD. There is an action sj ∈ S
for each j, and for each pair (i, j) with i < j there is an action yij ∈ Y . The rewards for a game G are as
follows. For any strategy pair, the optimizer’s utility is given by:

• uA(aj , bj) = j/M for bj ∈ B;

• uA(ai, bj) = 0 for bj ∈ B and with i 6= j;

• uA(ai, sj) = 0 for any sj ∈ S;

• uA(ai, yjk) = 0 for any yjk ∈ Y;

and the learner’s utility is given by:

• For bj ∈ BU :

– uB(aj , bj) = 1;

– uB(ai, bj) = 0 for i 6= j;

• For bj ∈ BD:

– uB(ai, bj) = 0 for any i;

• For sj ∈ S:

– uB(aj , sj) = 1 if bj ∈ BD;

– uB(aj , sj) = 0 if bj ∈ BU ;

– uB(ai, sj) = 0 for i 6= j;

• For yij ∈ Y:

– uB(ai, yij) = uB(aj , yij) = 2/3;

– uB(ak, yij) = 0 for i, j 6= k.

We assume that BU is non-empty, and so there is some optimal pure Nash equilibrium (a∗i , b
∗
i ) which yields

a reward of i/M ; it is simple to check that this is also the Stackelberg equilibrium.
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Optimizing against no-swap learners. First, we give a method for matching the Stackelberg value
against an arbitrary no-swap-regret learner, which corresponds to the pair (aj , bj) for the largest value j
such that bj ∈ BU . Consider a no-swap-regret learner which obtains a regret bound of τ = O(T c) over T
rounds. Let SRt(b, b

′) for any learner actions b and b′ denote the t-round cumulative swap regret between b
and b′, i.e. the total change in reward which would have occurred if b′ was played instead for each of the first
t rounds in which b was played. To model the behavior of an arbitrary no-swap-regret learner, we disallow
the learner from taking any action which would increase SRt(b, b

′) above τ , given the loss function for the
current round, and otherwise allow the action to be chosen adversarially. While our model is deterministic
for simplicity, it is straightforward to extend to the analysis to algorithms whose regret bounds hold in only
expectation, e.g. by considering a distribution over values of τ in accordance with Markov’s inequality (as
no algorithm can have negative expected regret against arbitrary adversaries) and considering our expected
regret to the Stackelberg value.

Our strategy for the optimizer is:

• For each i ∈ [M ], play ai until either bi or si is observed at least t∗ > τ times;

• Return a∗i for the largest i such that bi is observed t∗ times.

We show that this takes at most O(T c · M3) rounds. Once a∗i is identified, we can commit to playing it
indefinitely, at which point the learner must play b∗i in all but at most O(T c · poly(M)) rounds, and so with
T = O(poly(M/ε)) rounds we can increase the total fraction of rounds in which (a∗i , b

∗
i ) is played to 1 − ε,

which yields the desired average reward bound.
The key to analyzing the runtime of our strategy is to consider the “buffer” in regret between any pair of

actions before the threshold of τ is reached, which enables us to the bound the number of rounds in which
instantaneously suboptimal actions are played. Note that prior the start of window i (where ai is played),
both bi and si obtain reward 0 in each round, and as such cannot decrease their expected regret relative to
any other action, as all rewards in the game are non-negative. Further, for any previous window j, both bi
and si incur regret of 1 with respect to either bj or sj , as well as between the suboptimal and optimal action
in window i, and thus cannot be observed more than τ times in the window. As such, observing bi at least t∗

times in window i indicates that bi ∈ BU (and likewise observing bi at least t∗ times indicates that bi ∈ BD).
Any action b 6= BR(ai) will incur positive swap regret with respect to BR(ai), and cannot be played in

window i once SRt(b,BR(ai)) ≥ τ . Each action begins with SR1(b,BR(ai)) = 0 at time t = 1; for each of the
learner’s actions, we consider the rate at which its buffer decays, as well as instances in which swap regret
can decrease:

• Previously optimal b ∈ B ∪S \BR(ai): actions in B ∪S can only accumulate negative swap regret
with respect to BR(ai) during rounds in which they were previously optimal; any previous optimum
b = BR(aj) for j < i was played at most t∗ times during window j, and so we have that SRt(b,BR(ai)) ≥
−t∗.

• All b ∈ B ∪S \BR(ai): ignoring any previously accumulated regret buffer, each of these 2M −1 actions
can be played at most τ rounds during window i before exhausting their initial buffer. Accounting
for possible previous optima with SRt(b,BR(ai)) < 0, the number of rounds during window i in which
some b ∈ B ∪S \BR(ai) is played is at most Mt∗ + (2M − 1)τ .

• Safety actions yjk ∈ Y : Suppose neither aj or ak have been played yet by the optimizer, including in
the current window. As was the case for other actions which have never yielded positive instantaneous
reward, yjk can be played at most τ times before SRt(yjk,BR(ai)) ≥ τ . If j = i, i.e. this is the first
window in which yjk obtains positive instantaneous reward, the per-round regret is 1/3, and so at it
can be played for most 3τ rounds. Further, yjk a obtains a regret of −2/3 with respect to BR(ak). If
k = i and the window for aj has already been completed, yjk can be played for at most 9τ rounds, as
initially we have that SRt(yjk,BR(ai)) ≥ −2τ , which again increases by 1/3 per round. We then have
that the total amount of rounds with safety actions played during window i is at most (12M +M2)τ ,
as there are fewer than M2 total safety actions, and fewer than M in each of the latter cases.

This yields a per-window runtime across all actions of at most Mt∗+(M2+10M − 1)τ , which is O(T c ·M3)
across all windows, and so we obtain the desired result for optimizing against arbitrary no-swap-regret
learners.
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Optimizing against mean-based learners. Here, we show that there are mean-based no-regret algo-
rithms for which exponentially many rounds are required for an optimizer to approximate the Stackelberg
value against a learner. When considering horizons which are superpolynomial in the parameters of the
game, it is most natural to consider algorithms with regret bounds which are non-trivial for smaller horizons,
as well as an anytime variant of the mean-based property. We define an extension of the classical Multiplica-
tive Weight Updates algorithm (MWU; see [2] for a survey), called Rounded Mean-Based Doubling, which
inherits both properties in the anytime setting.

Algorithm 1 Rounded Mean-Based Doubling (RMBD)

Initialize and run MWU for T1 := 2 rounds and n actions.
Let T2 := 2T1 and i := 2.
while Ti ≤ T do

Initialize MWU for Ti rounds and n actions.
Simulate running MWU for Ti−1 rounds, using the average of the first Ti−1 rewards each round.

For Ti−1 rounds, run MWU with action probabilities rounded to multiples of 4γ = Õ(T
−1/2
i ).

Let Ti+1 = 2Ti and i := i+ 1.
end while

Lemma 6. When running RMBD for T rounds, the following hold at any round t ≤ T :

• RMBD has cumulative regret Õ(n
√
t);

• If action j has the highest cumulative reward and σi,t ≤ σj,t − Õ(
√
t), then action i is played with

probability 0 at round t.

Proof. Let C
√
t bound the regret of MWU over t rounds (where C = O(

√
logn)), and let D =

√
2C + Õ(n).

We can bound the regret of RMBD over Ti rounds by D
√
Ti via induction (which holds trivially at T1).

Suppose it holds for some Ti. Let R(Ti) be the true reward obtained by RMBD over Ti rounds, which is at
least σj∗,Ti

−D
√
Ti, where σj∗,Ti

is the cumulative reward of the best action over Ti rounds. Consider our
simulation of MWU over Ti rounds using the average reward function. As the reward function is identical
each round, and the cumulative reward for each action j is equivalent under averaging, the measured reward
R̂(Ti) from the simulated run is at most σj∗,Ti

after Ti rounds. Upon continuing to run this instance of MWU

for an additional Ti rounds, the regret bound ensures that the total measured reward R̂(Ti+1) is at least
σj∗,2Ti

− C
√
2Ti. Rounding probabilities contributes at most an additional 2nγTi to the regret; it suffices

to implement rounding by reallocating probability mass from any pi,t < 2γ onto other actions arbitrarily, to
avoid renormalization. The total reward of RMBD over 2Ti = Ti+1 is given by its cumulative reward at Ti,
as well as the additional reward obtained by the MWU instance over the next Ti rounds, and so we have that

R(Ti+1) = R(Ti) + R̂(Ti+1)− R̂(Ti)

≥ σj∗,Ti+1
−D

√

Ti − C
√

2Ti − 2nγTi

≥ σj∗,Ti+1
−D

√

Ti+1,

which yields the bound for every Ti. We can extend this to any t ∈ [Ti, Ti+1] with at most a factor 2 increase
to cumulative regret.

To bound the selection frequency of actions with suboptimal cumulative reward, we recall the mean-based
analysis of MWU given in Theorem D.1 from [5], which shows that the selection frequency pk,t for action k

at time t is at most γ = 2 log(
√
T logn)√

T log n
if σk,t ≤ σj,t − γT for the action j with highest cumulative reward. As

such, any action whose cumulative reward σk,t ≤ σj,t − Õ(
√
t) will be played with probability 0.

Suppose a learner plays the action with highest cumulative reward at each round for tburn = Ω̃(M2)
rounds, then plays RMBD thereafter for a total of T rounds. Note that this maintains the both properties
of RMBD for all t. We show that at least T = exp(Ω(M)) rounds are required to identify the Stackelberg
strategy. The optimizer must check the learner’s pure best response to each aj for identification with certainty,
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and it is straightforward to construct a distribution in which any strategy which does not observe BR(aj) for
all j will have linear regret to StackA in expectation (e.g. where BU contains one action chosen uniformly
at random). The difficulty in exploration of the best responses comes from the safety actions, as aj must
have been played more frequently than any other action in order to not be dominated by some safety action.
Let ρj,t denote the number of rounds in which the optimizer has played aj out of the first t. Observe that
by construction of the game and the properties of RMBD, an primary or secondary action bj or sj in BR(aj)
will only be played with positive probability when:

ρj,t ≥
2

3
(ρj,t + ρk,t)− Õ(

√
t)

= 2ρk,t − Õ(
√
t)

for all k, which necessitates that ρj,t ≥ 2t
M − Õ(

√
t). Taking tburn sufficiently large, we have that ρj,t ≥ 3

2ρk,t
for any t ≥ tburn and all k. For any subsequent observation BR(ak) at t′, we must have that ρk,t′ ≥ 3

2ρj,t,
and so the number of rounds required to play an action before observing its best response grow at a rate of
at least (3/2)M , which completes the proof.
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