
COS 510 Notes: Curry-Howard Isomorphism

Kiran Vodrahalli

April 7, 2014

1 The Curry-Howard Isomorphism

1.1 Introduction

The Curry-Howard isomorphism is a direct analogy between computer programs
and mathematical proofs of program correctness. A pithy way that people put
it is ”Proofs are programs.”

Definition 1.1. An inhabited type is a type is a type which has values. In
the Curry-Howard isomorphism, we are concerned with when a given arbitrary
type has values since inhabited types correspond with logically valid formulas.
If we can find the values that exist for a given a type, it turns out that the type
corresponds to a true mathematical theorem.

Theorem 1.2. The Curry-Howard isomorphsim states that proofs of for-
mula are programs with with a corresponding type.

Following is a table of what programming concept the Curry-Howard iso-
morphism maps each logical concept to.

Constructive and Intuitionistic Functional
Logical Concept Programming Concept
Proof Program
Formula Type
Valid Formula Inhabited Type
Proof Simplification Program Execution

We can be even more specific and translate specific logical formulas to pro-
gram types.

1

Logical Formula Program Type
Implication Function type A→ B
Proof of: Function
Conjunction Pair type A ∗B
Proof of: (e1, e2)
True Unit
Proof of: ()
False Void
Proof of: abort, failwith
Disjunction sumtype
Proof of: tagged value

Remark 1.3. The term tagged value refers to the notion that the value is
tagged either ”left” or ”right”. We will see this later on in the lecture.

1.2 The Language of Types

Now we define the language of types:

Definition 1.4. We define a type

τ := unit | τ1 → τ2 | τ1 ∗ τ2. (1)

Definition 1.5. We will be working in call-by-value lambda calculus since this
is easier. Our value constructors are

v := () | λx : τ1.e. (2)

Definition 1.6. Our expressions are

e := x | v | e1e2 | (e1, e2) | π1e | π2e. (3)

Remark 1.7. Note that π1 is equivalent to fst, and π2 is equivalent to snd.

Definition 1.8. We define our context as a list of assumptions:

Γ := x1 : τ1, x2 : τ2, ..., xn : τn. (4)

We can then proceed to give rules for proving things about this type lan-
guage.

1.3 Type Rules

Definition 1.9. The pair introduction rule is given by

Γ ` e1 : τ1 Γ ` e2 : τ2
Γ ` (e1, e2) : τ1 ∗ τ2

. (5)

2

Definition 1.10. The 1st pair elimination rule is given by

Γ ` e : τ1 ∗ τ2
Γ ` π1e : τ1

(6)

and the 2nd pair elimination rule is given by

Γ ` e : τ1 ∗ τ2
Γ ` π2e : τ2

. (7)

Definition 1.11. The lambda introduction rule is given by

Γ, x : τ ` e : τ ′ (x /∈ Γ)

Γ ` λx : τ.e : τ → τ ′
. (8)

Definition 1.12. The composition introduction rule is given by

Γ ` e1 : τ1 → τ2 Γ ` e2 : τ1
Γ ` e1e2 : τ2

(9)

This rule describes function composition for appropriately typed functions.

Definition 1.13. We can now introduce another elimination form for pairs, the
let expression.

Γ ` e1 : τ1 ∗ τ2 Γ, x1 : τ1, x2 : τ2 ` e2 : C

Γ ` let (x1, x2) = e1 in e2 : C
(10)

The meta-idea here is that we took a concept we learned about in logic and
thought, what programming language concept does this become? What types
will do is prevent you from generating expressions such as ()(x1, x2) – this is
a stuck state. Execution can’t continue, and it’s not a value. So this is bad!
Types remove this possibility. Not every expression has a type, only the ones
that allow us to build derivations with the values (in other words, the type must
be inhabited).

Remark 1.14. Another useful way to think of types is to view them as predic-
tions. You predict this expression will be a certain type, and if the expression
terminates, you know what form the expression is.

Remark 1.15. Another thing to keep in mind is that we only place typing
annotations on variables. Often, we add other expressions, and we may express
that as follows:

Γ ` e : τ

Γ ` e : τ : τ
(11)

Example 1.16. We’ll use the let expression to build a derivation for a function
that swaps the order of arguments. We begin what we want to prove:

` λx : τ1 ∗ τ2. let (y, z) = x in (z, y) : τ1 ∗ τ2 → τ2 ∗ τ1 (12)

3

Then we know that directly above it must be the function introduction rule, so
we write

x : τ1 ∗ τ2 ` let (y, z) = x in (z, y) : τ2 ∗ τ1
` λx : τ1 ∗ τ2. let (y, z) = x in (z, y) : τ1 ∗ τ2 → τ2 ∗ τ1

(13)

To get here, we must have used the let intro rule, the pair intro rule, and the
hypothesis rule.

x : τ1 ∗ τ2 ` x : τ1 ∗ τ2 Γ`z:τ2 Γ`y:τ1
x:τ1∗τ2,y:τ1,z:τ2`(z,y)

x:τ1∗τ2` let (y,z)=x in (z,y):τ2∗τ1
`λx:τ1∗τ2. let (y,z)=x in (z,y):τ1∗τ2→τ2∗τ1

(14)

Remark 1.17. Note that we can’t use the following hypothesis rule:

Γ ` e : τ : τ (15)

This could be wrong! We need to check whether the expression is allowed first.
Types always show up at the end of judgement (and not in expressions).

1.4 Disjunction, or the Logical Or

So far, we have not considered how logical disjunction appears in programs. In
the table above, we have attached to disjunction the term sumtype. What
does this mean though?

Definition 1.18. The sumtype τ1 + τ2 is essentially τ1 OR τ2. We expressed
this in OCaml as follows:

type either = left of int | right of int (16)

Remark 1.19. Note that sumtypes are different from both pairs and records,
and that a pair is basically a record with anonymous fields. As another aside,
Haskell and other languages do lots of inlining and you should never decide
to create a record in an attempt to optimize code – Haskell for instance has
”fst” and ”snd”. On the other hand, a sumtupe is a datatype as opposed to a
structure.

So we can extend τ to τ1 + τ2. We need to similarly extend our values and
expressions.

Definition 1.20. Define
inlτ1+τ2(v) (17)

and
inrτ1+τ2(v) (18)

as the two possible values of the sumtype.

Definition 1.21. We also can add

inlτ1+τ2(e) | inlτ1+τ2 | case e of inl x→ e1| inr x→ e2 (19)

to our list of allowed expressions.

4

1.5 Operational Semantics of Sumtypes

Definition 1.22. Now we define some operational semantics for inl and inr.

e→ e′

inl e→ inl e′
(inl 1) (20)

e→ e′

inr e→ inr e′
(inr 1) (21)

Definition 1.23. We also need to be able to use case, as we defined it in our
expressions.

case (inl v) : (inl x→ e1|inr x→ e2) → e1[v/x] (22)

case (inr v) : (inl x→ e1|inr x→ e2) → e2[v/x] (23)

These rules basically means that we look at the tag and decide the branch to go
along. We allow e1 to use x. We just take v out and replace it with x. Similarly
we can do the same for e2 with inr.

Definition 1.24. Finally, we have a transition rule for case.

e→ e′

case e(inl x→ e1|inr x→ e2)→ case e′(inl x→ e1|inr x→ e2)
(case’)

(24)

1.6 Type Rules for Sumtypes

We also give the rules for sumtypes, which are very similar to the logical rules
for disjunction.

Definition 1.25. First we give the rules for inl and inr.

Γ ` e : τ1
Γ ` inlτ1+τ2e : τ1 + τ2

(inl) (25)

Γ ` e : τ2
Γ ` inrτ1+τ2e : τ1 + τ2

(inr) (26)

Definition 1.26. Then, the introduction rule for case is exactly like that of
the logical rule for disjunction.

Γ ` e : τ1 + τ2 Γ, x : τ1 ` e1 : τ3 Γ, y : τ2 ` e2 : τ3
Γ ` case e of (inl x→ e1 | inr y → e2) : τ3

(27)

e can have free variables, but they better appear in the context. Note that we
also assume the types of x and y are correct.

5

2 Introduction to Type Safety

Type systems are supposed to ensure that we never get stuck.

Theorem 2.1. The Safety Property states that if ` e : τ and e →∗ e′, then
e is not stuck: either e′ is a value or e′ → e′′, meaning we can continue on.

We can show a rule is bad if we can provide a counterexample to the safety
theorem.

Example 2.2. What would happen if we replaced our pair type rule with a
rule analagous to disjunction ?

We call our rule P* (pair star):

Γ ` e1 : τ1 + τ2 Γ, x : A, y : B ` C
Γ ` let (x, y) = e1ine2 : C

(28)

We want to know how this affects the legitimacy of our type system.
First we have to define the new operational semantics for P∗:

e1 → e′1
let (x, y) = e1 in e2 → let (x, y) = e′1 in e2

(29)

let(x, y) = inl v in e2 → e2[v/x] (30)

let(x, y) = inr v in e2 → e2[v/y] (31)

So, what’s going to break? We want an expression that typechecks such that
` e : τ and e→∗ e′ and e′ is still stuck.

We construct the expression let (x, y) = inl()+()() in y.
We can use (30) to step to y, but y is not a value. Morever, there are no

operational rules that allow us to get from a variable to anywhere else. So we
are stuck at something that is not a value, and we know that we have a bad
typing rule.

More generally, for any good set of typing rules, a few other properties must
also hold:

Lemma 2.3. The Preservation Lemma states that if we have ` e : τ and
e→ e′, then ` e′ : τ .

Lemma 2.4. The Progress Lemma states that if ` e : τ then e is not stuck.

In our example, we saw that progress was violated since we got to a state
which did not have a type. We will prove Progress and Preservation next time,
but in the meantime, we’ll assume them to be true. Assuming Progress and
Preservation, we are able to prove the Safety Property. We proceed by in-
duction on the derivation e →∗ e′ (multi-step operational semantics). Our
induction hypothesis is that Safety is satisfied for a slightly smaller form of each
case. Our method of proof relies on reducing each case to its smaller case and
applying the induction hypothesis.

6

Case e→∗ e (reflex): In this case, e = e′ and we are automatically done
since by assumption of the Safety Theorem, Γ ` e : τ , and e is thus not stuck
by Progress.

Case e1→e2 e2→∗e3
e1→∗e3

(trans): We must prove that e3 is not stuck. Using
the implication intro rule, we have ` e1 : τ . By Preservation, e1 → e2, and
` e1 : τ , we have ` e2 : τ . By the induction hypothesis, e3 is not stuck since
e2 →∗ e3 and ` e2 : τ .

Since these are all cases for multi-step operational semantics, we are done.
Q.E.D.

7

