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1 Notations

In these notes,

• X denotes a finite set, called the source alphabet in this lecture. The elements of X are
called the symbols.

• P is a probability distribution on X .

• C is a source encoder on X .

• LC(x) denotes the length of the codeword C(x) for some element x 2 X .

• The expected value of the length of a codeword for some P and C is given by:

L̄(P, C) =
X

x2X
P (x)LC(x) (1)

• UD is the set of codes that are uniquely decodeable.

2 Generalizing Kraft’s Inequality to all Uniquely Decodeable
Codes

In this section, we show that we can generalize Kraft’s Inequality to any uniquely decodeable
code.

Theorem 1 (McMillian).
For all uniquely decodeable codes C on X ,

X

x2X
2�LC(x)  1 (2)

Note that we already have the converse from Kraft’s Inequality: If (2) is satisfied, then there

exists a uniquely decodeable code (just choose a prefix-free one).
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Proof. Let C be a uniquely decodeable code on X , and let

↵ =
X

x2X
2�LC(x) (3)

We only assume ↵ > 0. We claim that 9 a constant � > 0 such that

↵k  �k (4)

for all k. This inequality implies that ↵  1, for otherwise, there would exist a k for which
↵k > �k since we would have increasing exponential growth on the LHS, and linear growth
on the RHS. So we will show (4) and conclude the proof.

We have that

↵k =

kY

i=1

(
X

xi2X
2�LC(xi)) =

X

x

1

,x

2

,...,xk2X
2�(LC(x1

)+...+LC(xk)) (5)

Now, we know that the minimum value of any LC(x) is 1, so we let L
min

= 1, and let
L
max

= max
x2XLC(x). Then, we have that

kX

i=1

LC(xi) 2 [k, k ⇤ L
max

] (6)

Thus, we can rewrite (5) as

kL

maxX

l=k

X

x

1

,...,xk2X s.t.

Pk
i=1

LC(xi)=l

2�l (7)

Then let

A(l) =
X

x

1

,...,xk2X s.t.

Pk
i=1

LC(xi)=l

1 (8)

Then we have that

↵k =

kL

maxX

l=k

2�lA(l) (9)

Since C is uniquely decodeable, there are at most 2l ways to generate codewords so that the
sum of the lengths of the code words is l. The reason is as follows: the max size of a codeword
is l (otherwise, we violate the sum condition). Supposing every codeword was length l, there
are a maximum of 2l distinct such codewords – we require them to be distinct, otherwise C
is not uniquely decodeable. Thus, the number of ways to assign unique codewords cannot be
more than 2l. Therefore, we have an upper bound A(l)  2l and we can say that

↵k =

kL

maxX

l=k

2�lA(l) 
kL

maxX

l=k

1  kL
max

= k� (10)

Therefore, we have shown that ↵k  k�, as desired, implying the result.
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3 Entropy Lower Bound on ¯L(P, C)
Definition 1. Entropy is defined as

H(P ) =
X

x2X
P (x)log

2

1

P (x)
(11)

Theorem 2. 8X , P, and C on X with C uniquely decodeable, H(P )  L̄(P, C).

Proof. We will express the minimization problem as follows: Find

min{
X

x2X
P (x)L

K

(x)}  L̄(P, C) (12)

minimizing over all K that are uniquely decodeable. Therefore {L
K

(x)}
x2X satisfies McMil-

lian’s Theorem,
P

x2X 2�LK(x)  1.

Now define q(x) = 2�LK(x). Note q(x) > 0 8x 2 X , and that we have

X

x2X
q(x)  1 (13)

by McMillian’s Theorem. We now rewrite the optimization problem in terms of q(x):

min{
X

P (x)L
K

(x)} = min{
X

P (x)log
2

1

q(x)
} (14)

with q(x) > 0,
P

q(x)  1. However, there was also the hidden constraint that L
K

(x) 2 Z+.
If we only look for q(x) that are positive, we’re relaxing a constraint. However, if we denote
by M the minimization problem defined over integral q(x), we have that since Z+ ⇢ R+,

min{
X

P (x)log
2

1

q(x)
}  M (15)

where q(x) > 0,
P

x2X q(x)  1 and q(x) not necessarily in Z+. Thus, our goal is now to
show that

H(P ) =
X

x2X
P (x)log

2

1

P (x)
 min{

X

x2X
P (x)log

2

1

q(x)
} (16)

for {q(x)}
x2X such that q(x) > 0,

P
q(x)  1. To do this, we show that the LHS - RHS of

(16) is  0. We have that LHS - RHS =

X

x2X
P (x)log

2

q(x)

P (x)
(17)

Note that we can provide a simple upper bound for log
2

(x) with the tangent line at x = 1,
f(x) = 1

ln(2)

(x� 1).
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Figure 1: Tangent Upper Bound on Log
2

(x)

Then from (17), we have

X

x2X
P (x)log

2

q(x)

P (x)
 1

ln(2)

X

x2X
P (x)(

q(x)

P (x)
� 1) =

1

ln(2)
(
X

x2X
q(x)�

X

x2X
P (x)) (18)

Then, since a probability distribution sums to 1,
P

x2X P (x) = 1. From our assumptions
about q(x), we have

P
x2X q(x)  1. Therefore,

1

ln(2)
(
X

x2X
q(x)�

X

x2X
P (x))  1

ln(2)
(1� 1) = 0 (19)

and we have

X

x2X
P (x)log

2

q(x)

P (x)
 0 (20)

as desired. We conclude

H(P )  L̄(P, C) (21)

for all uniquely decodeable C.

3.1 The Information Inequality: A Brief Digression

Definition 2 (Kullback-Leibler Divergence). Let p and q be probability distributions on X .

Let

D(p||q) =
X

x2X
p(x)log

2

p(x)

q(x)
(22)

This quantity is also known as relative entropy.
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We can note a few things about the KL-divergence. First, we’ve already proved that
D(p||q) � 0 8p, q. (As we saw, it’s enough that

P
q(x)  1 – we’re imposing a stronger

condition when we require q to be a probability distribution.) We have that D(p||q) = 0 if
and only if p = q. However, since D(p||q) is not symmetric and the triangle inequality does
not hold, it is not a complete distance metric.

In practice, the KL-divergence acts as something like a norm-squared. If p and q are
close, we have

D(p||q) ⇡
X

x

(p(x)� q(x))2p(x) = ||p� q||
p

2 (23)

An analogy for this behavior is comparing the way the triangle inequality works to the general
Pythagorean theorem. Here, a, b, c will be the sides of a triangle in Euclidean space. For
the triangle inequality, we have that a + b � c over all permutations of the sides. For the
Pythagorean theorem, we have that a2 + b2 = c2, or a2 + b2 < c2, or a2 + b2 > c2, all of
which imply di↵erent things about the angles of the triangle that a, b, c make. We can do
some work to define a notion of angle for probability distributions, but we will not go into
that here. For more information about this sort of thing, look up Information Geometry.

4 To What Extent is H(P ) a Lower Bound?

We might now have some questions regarding the tightness of the entropy lower bound on
expected codeword length.

• Can we achieve H(P )? When and how often?

• If you can’t achieve H(P ), how close can you get?

• How do you construct the code of optimal expected length for a given distribution?

4.1 When and With What Frequency Can We Achieve H(P )?

If P (x) is a negative power of two (i.e., P (x) 2 2�Z+ 8x 2 X ), then L(x) = log
2

1

P (x)

� 0

and
P

x2X 2�L(x) =
P

x2X P (x) = 1, and we can therefore achieve the entropy bound with a
uniquely decodeable code after applying the existence part of Kraft’s Inequality.

Example 1. Suppose our probability distribution is P = {P (x
1

) = 1

2

, P (x
2

) = 1

4

, P (x
3

) =
1

8

, P (x
4

) = 1

8

}. Then we define C = {C(x
1

) = 0, C(x
2

) = 10, C(x
3

) = 110, C(x
4

) = 111}
and we can calcuate H(P ) = 1

2

⇤ 1 + 1

4

⇤ 2 + 1

8

⇤ 6 = 1.75. We also calculate L̄(P, C) =
1

2

⇤ 1 + 1

4

⇤ 2 + 1

8

⇤ 6 = 1.75, and we see we have equality.

In fact, the entropy can be achieved if and only if P (x) 2 2�Z+ 8x 2 X , and furthermore,
we can achieve it with a prefix-free code.

4.2 How Close to H(P ) Can We Get?

Theorem 3. H(P )  L̄⇤(P )  H(P ) + 1, where L̄⇤(P ) = minC2UD

{L̄(P, C)}.
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Proof. If we have that P (x) 62 2�Z+

for some x 2 X , then log
2

1

P (x)

62 Z. Let l(x) = dlog
2

1

P (x)

e.
Then,

X

x2X
l(x)P (x) =

X

x2X
dlog

2

1

P (x)
eP (x) 

X

x2X
(log

2

(
1

P (x)
) + 1)P (x) (24)

= H(P ) +
X

x2X
P (x) = H(P ) + 1 (25)

Next time, we will show that

H(P )  L̄⇤(X
1

X
2

...X
n

)

n
 nH(P ) + 1

n
= H(P ) +

1

n
(26)

where we are considering the average minimum length after n trials X
1

through X
n

. As n
grows really large, the bound for the average minimum length shrinks more and more tightly
just slightly above H(P ).

4.3 Construction of Optimal Codes

The short answer is Hu↵man Codes. We’ll go into more detail on this next time.
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