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1 Notations

In these notes,

e X denotes a finite set, called the source alphabet in this lecture. The elements of X are
called the symbols.

P is a probability distribution on X.

C is a source encoder on X.

e L¢(z) denotes the length of the codeword C(x) for some element x € X.

The expected value of the length of a codeword for some P and C is given by:

L(P.C) = Y P(a)Le(a) 8

TeEX

e UD is the set of codes that are uniquely decodeable.

2 Generalizing Kraft’s Inequality to all Uniquely Decodeable
Codes

In this section, we show that we can generalize Kraft’s Inequality to any uniquely decodeable
code.

Theorem 1 (McMillian).
For all uniquely decodeable codes C on X,

Z 2 Le@) <1 (2)
TEX

Note that we already have the converse from Kraft’s Inequality: If (2) is satisfied, then there
exists a uniquely decodeable code (just choose a prefix-free one).



Proof. Let C be a uniquely decodeable code on X', and let
a=Y 27t (3)
TEX

We only assume o > 0. We claim that 3 a constant 8 > 0 such that
o < Bk (4)

for all k. This inequality implies that o < 1, for otherwise, there would exist a k for which
of > Bk since we would have increasing exponential growth on the LHS, and linear growth
on the RHS. So we will show (4) and conclude the proof.

We have that

k
of = H( Z g~ Le(@)y — Z 9—(Le(z1)+.+Le(zk)) (5)
=1 x;,€X T1,22,...,LLEX
Now, we know that the minimum value of any L¢(x) is 1, so we let Ly, = 1, and let

Liax = maxgex Le(z). Then, we have that

k

> Le(wi) € [k, k * Linay] (6)
=1

Thus, we can rewrite (5) as

kLmax

2 2 2 ")

I=k g, . zex s.t.Zf:I Le(zs)=l

Then let

A(l) = > 1 (8)

Z1,..., Tk EX s.t. Zle Le(zs)=l

Then we have that
kLmax

of = lz; 27LA(l) (9)

Since C is uniquely decodeable, there are at most 2! ways to generate codewords so that the
sum of the lengths of the code words is [. The reason is as follows: the max size of a codeword
is | (otherwise, we violate the sum condition). Supposing every codeword was length [, there
are a maximum of 2! distinct such codewords — we require them to be distinct, otherwise C
is not uniquely decodeable. Thus, the number of ways to assign unique codewords cannot be
more than 2!. Therefore, we have an upper bound A(l) < 2! and we can say that

k‘Lmax kLmax
of = 3 27TA() < D 1< kLax = kB (10)
1=k I=k
Therefore, we have shown that o < k3, as desired, implying the result. ]



3 Entropy Lower Bound on L(P,C)

Definition 1. Entropy is defined as

=) Plx 10g2P @ (11)
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Theorem 2. VX, P, and C on X with C uniquely decodeable, H(P) < L(P,C).

Proof. We will express the minimization problem as follows: Find

min{»  P(z)Lk(z)} < L(P,C) (12)
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minimizing over all K that are uniquely decodeable. Therefore { L (x)},cx satisfies McMil-
lian’s Theorem, >, _, 27 Ex(@ < 1.
Now define g(z) = 2= 5(#) Note ¢(x) > 0 Vz € X, and that we have

Y alz) <1 (13)

zeX

by McMillian’s Theorem. We now rewrite the optimization problem in terms of ¢(z):

min{z P(z)Lg(x)} = min{z P(z)log, } (14)

1
q()
with g(z) > 0, q(z) < 1. However, there was also the hidden constraint that Lx(z) € Z7.

If we only look for g(x) that are positive, we're relaxing a constraint. However, if we denote
by M the minimization problem defined over integral q(z), we have that since ZT C RT,

min{z P(z)log, }<M (15)

1
q()
where g(z) > 0,3y q(x) < 1 and g(x) not necessarily in Z*. Thus, our goal is now to
show that

;{P logQP )<min{;{P(x)log2q(lx)} (16)

for {q(z)}zex such that g(x) > 0, q(z) < 1. To do this, we show that the LHS - RHS of
(16) is < 0. We have that LHS - RHS =

Y P a(r) (17)

reX x)

Note that we can provide a simple upper bound for log, (z) with the tangent line at x = 1,

f(@) = mi(z = D).



Figure 1: Tangent Upper Bound on Log,(x)

Then from (17), we have

q(z) 1 q(z) 1
> P(fﬂ)logzp(x) < () > P(x)(P(x) -1)= n(2) O al@) =Y P(2) (18)

reX reX zeX TeX

Then, since a probability distribution sums to 1, > ., P(xz) = 1. From our assumptions
about ¢(z), we have ) .y q(x) < 1. Therefore,

e (Z at) - X P@) < mE-D=0 (19)
and we have
3 Pos 2 <o (20)
as desired. We conclude
H(P) < L(P,C) (21)
for all uniquely decodeable C. O

3.1 The Information Inequality: A Brief Digression

Definition 2 (Kullback-Leibler Divergence). Let p and q be probability distributions on X.
Let

Do) = Y- plaon, (22)
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This quantity is also known as relative entropy.



We can note a few things about the KL-divergence. First, we’ve already proved that
D(pllg) > 0 Vp,q. (As we saw, it’s enough that > ¢(z) < 1 — we're imposing a stronger
condition when we require g to be a probability distribution.) We have that D(p||q) = 0 if
and only if p = q. However, since D(pl||q) is not symmetric and the triangle inequality does
not hold, it is not a complete distance metric.

In practice, the KL-divergence acts as something like a norm-squared. If p and ¢ are
close, we have

D(pllg) = > (p(x) — q(x))*p(z) = [Ip — gl (23)

T

An analogy for this behavior is comparing the way the triangle inequality works to the general
Pythagorean theorem. Here, a,b,c will be the sides of a triangle in Euclidean space. For
the triangle inequality, we have that a + b > ¢ over all permutations of the sides. For the
Pythagorean theorem, we have that a® + b? = ¢?, or a® + b*> < 2, or a®> + b > ¢2, all of
which imply different things about the angles of the triangle that a,b,c make. We can do
some work to define a notion of angle for probability distributions, but we will not go into
that here. For more information about this sort of thing, look up Information Geometry.

4 To What Extent is H(P) a Lower Bound?

We might now have some questions regarding the tightness of the entropy lower bound on
expected codeword length.

e Can we achieve H(P)? When and how often?
e If you can’t achieve H(P), how close can you get?

e How do you construct the code of optimal expected length for a given distribution?

4.1 When and With What Frequency Can We Achieve H(P)?

If P(x) is a negative power of two (i.e., P(z) € 272" V& € X), then L(z) = loggﬁ >0
and )y 9~ L(@) = > wex P(z) =1, and we can therefore achieve the entropy bound with a

uniquely decodeable code after applying the existence part of Kraft’s Inequality.

Example 1. Suppose our probability distribution is P = {P(z1) = 3, P(z2) = %, P(z3) =
1, P(z4) = £}. Then we define C = {C(z1) = 0,C(x2) = 10,C(x3) = 110,C(zq) = 111}
and we can calcuate H(P) = 1+ 1+ 1 %2+ 1 %6 = 1.75. We also calculate L(P,C) =
% x 1+ % * 2+ % *6 = 1.75, and we see we have equality.

In fact, the entropy can be achieved if and only if P(x) € 272" Yy e X , and furthermore,
we can achieve it with a prefix-free code.

4.2 How Close to H(P) Can We Get?
Theorem 3. H(P) < L*(P) < H(P) + 1, where L*(P) = minceyp{L(P,C)}.



Proof. If we have that P(z) € 272" for some = € X, then logQ% Z7Z. Letl(x) = ﬂogQ%]
Then,

1 1
;{l(x)P(ﬂﬂ) = ; DOgQ%WP(w) < g(logz(P(x)) +1)P(x) (24)
=H(P)+» P(x)=H(P)+1 (25)
reX
O
Next time, we will show that
H(P) < L*(Xliig...Xn) < nH(JZ) +1 H(P) +% (26)

where we are considering the average minimum length after n trials X; through X,,. Asn
grows really large, the bound for the average minimum length shrinks more and more tightly
just slightly above H(P).

4.3 Construction of Optimal Codes

The short answer is Huffman Codes. We’ll go into more detail on this next time.



