APC486/ELE486: Transmission and Compression of Information

Bounds on the Expected Length of Code Words

Scribe: Kiran Vodrahalli

September 18, 2014

1 Notations

In these notes,

- \mathcal{X} denotes a finite set, called the source alphabet in this lecture. The elements of \mathcal{X} are called the symbols.
- P is a probability distribution on \mathcal{X} .
- \mathcal{C} is a source encoder on \mathcal{X} .
- $L_{\mathcal{C}}(x)$ denotes the length of the codeword $\mathcal{C}(x)$ for some element $x \in \mathcal{X}$.
- The expected value of the length of a codeword for some P and C is given by:

$$\bar{L}(P,\mathcal{C}) = \sum_{x \in \mathcal{X}} P(x) L_{\mathcal{C}}(x)$$
(1)

• UD is the set of codes that are uniquely decodeable.

2 Generalizing Kraft's Inequality to all Uniquely Decodeable Codes

In this section, we show that we can generalize Kraft's Inequality to any uniquely decodeable code.

Theorem 1 (McMillian). For all uniquely decodeable codes C on \mathcal{X} ,

$$\sum_{x \in \mathcal{X}} 2^{-L_{\mathcal{C}}(x)} \le 1 \tag{2}$$

Note that we already have the converse from Kraft's Inequality: If (2) is satisfied, then there exists a uniquely decodeable code (just choose a prefix-free one).

Proof. Let \mathcal{C} be a uniquely decodeable code on \mathcal{X} , and let

$$\alpha = \sum_{x \in \mathcal{X}} 2^{-L_C(x)} \tag{3}$$

We only assume $\alpha > 0$. We claim that \exists a constant $\beta > 0$ such that

$$\alpha^k \le \beta k \tag{4}$$

for all k. This inequality implies that $\alpha \leq 1$, for otherwise, there would exist a k for which $\alpha^k > \beta k$ since we would have increasing exponential growth on the LHS, and linear growth on the RHS. So we will show (4) and conclude the proof.

We have that

$$\alpha^{k} = \prod_{i=1}^{k} \left(\sum_{x_{i} \in \mathcal{X}} 2^{-L_{\mathcal{C}}(x_{i})} \right) = \sum_{x_{1}, x_{2}, \dots, x_{k} \in \mathcal{X}} 2^{-(L_{\mathcal{C}}(x_{1}) + \dots + L_{\mathcal{C}}(x_{k}))}$$
(5)

Now, we know that the minimum value of any $L_{\mathcal{C}}(x)$ is 1, so we let $L_{\min} = 1$, and let $L_{\max} = \max_{x \in \mathcal{X}} L_{\mathcal{C}}(x)$. Then, we have that

$$\sum_{i=1}^{k} L_{\mathcal{C}}(x_i) \in [k, k * L_{\max}]$$
(6)

Thus, we can rewrite (5) as

$$\sum_{l=k}^{kL_{\max}} \sum_{x_1,\dots,x_k \in \mathcal{X} \text{ s.t.} \sum_{i=1}^k L_{\mathcal{C}}(x_i) = l} 2^{-l}$$

$$\tag{7}$$

Then let

$$A(l) = \sum_{\substack{x_1, \dots, x_k \in \mathcal{X} \text{ s.t. } \sum_{i=1}^k L_{\mathcal{C}}(x_i) = l}} 1$$
(8)

Then we have that

$$\alpha^k = \sum_{l=k}^{kL_{\text{max}}} 2^{-l} A(l) \tag{9}$$

Since C is uniquely decodeable, there are at most 2^l ways to generate codewords so that the sum of the lengths of the code words is l. The reason is as follows: the max size of a codeword is l (otherwise, we violate the sum condition). Supposing every codeword was length l, there are a maximum of 2^l distinct such codewords – we require them to be distinct, otherwise C is not uniquely decodeable. Thus, the number of ways to assign unique codewords cannot be more than 2^l . Therefore, we have an upper bound $A(l) \leq 2^l$ and we can say that

$$\alpha^{k} = \sum_{l=k}^{kL_{\max}} 2^{-l} A(l) \le \sum_{l=k}^{kL_{\max}} 1 \le kL_{\max} = k\beta$$
(10)

Therefore, we have shown that $\alpha^k \leq k\beta$, as desired, implying the result.

3 Entropy Lower Bound on $\overline{L}(P, \mathcal{C})$

Definition 1. Entropy is defined as

$$H(P) = \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{1}{P(x)}$$
(11)

Theorem 2. $\forall \mathcal{X}, P$, and \mathcal{C} on \mathcal{X} with \mathcal{C} uniquely decodeable, $H(P) \leq \overline{L}(P, \mathcal{C})$.

Proof. We will express the minimization problem as follows: Find

$$\min\{\sum_{x\in\mathcal{X}} P(x)L_K(x)\} \le \bar{L}(P,\mathcal{C})$$
(12)

minimizing over all K that are uniquely decodeable. Therefore $\{L_K(x)\}_{x \in \mathcal{X}}$ satisfies McMillian's Theorem, $\sum_{x \in \mathcal{X}} 2^{-L_K(x)} \leq 1$.

Now define $q(x) = 2^{-L_K(x)}$. Note $q(x) > 0 \ \forall x \in \mathcal{X}$, and that we have

$$\sum_{x \in \mathcal{X}} q(x) \le 1 \tag{13}$$

by McMillian's Theorem. We now rewrite the optimization problem in terms of q(x):

$$\min\{\sum P(x)L_K(x)\} = \min\{\sum P(x)\log_2\frac{1}{q(x)}\}$$
(14)

with $q(x) > 0, \sum q(x) \leq 1$. However, there was also the hidden constraint that $L_K(x) \in \mathbb{Z}^+$. If we only look for q(x) that are positive, we're relaxing a constraint. However, if we denote by M the minimization problem defined over integral q(x), we have that since $\mathbb{Z}^+ \subset \mathbb{R}^+$,

$$\min\{\sum P(x)\log_2\frac{1}{q(x)}\} \le M \tag{15}$$

where $q(x) > 0, \sum_{x \in \mathcal{X}} q(x) \leq 1$ and q(x) not necessarily in \mathbb{Z}^+ . Thus, our goal is now to show that

$$H(P) = \sum_{x \in \mathcal{X}} P(x) \log_2 \frac{1}{P(x)} \le \min\{\sum_{x \in \mathcal{X}} P(x) \log_2 \frac{1}{q(x)}\}$$
(16)

for $\{q(x)\}_{x \in \mathcal{X}}$ such that $q(x) > 0, \sum q(x) \leq 1$. To do this, we show that the LHS - RHS of (16) is ≤ 0 . We have that LHS - RHS =

$$\sum_{x \in \mathcal{X}} P(x) \log_2 \frac{q(x)}{P(x)} \tag{17}$$

Note that we can provide a simple upper bound for $\log_2(x)$ with the tangent line at x = 1, $f(x) = \frac{1}{\ln(2)}(x-1)$.

Figure 1: Tangent Upper Bound on $Log_2(x)$

Then from (17), we have

$$\sum_{x \in \mathcal{X}} P(x) \log_2 \frac{q(x)}{P(x)} \le \frac{1}{\ln(2)} \sum_{x \in \mathcal{X}} P(x) (\frac{q(x)}{P(x)} - 1) = \frac{1}{\ln(2)} (\sum_{x \in \mathcal{X}} q(x) - \sum_{x \in \mathcal{X}} P(x))$$
(18)

Then, since a probability distribution sums to 1, $\sum_{x \in \mathcal{X}} P(x) = 1$. From our assumptions about q(x), we have $\sum_{x \in X} q(x) \leq 1$. Therefore,

$$\frac{1}{\ln(2)} \left(\sum_{x \in X} q(x) - \sum_{x \in \mathcal{X}} P(x)\right) \le \frac{1}{\ln(2)} (1-1) = 0$$
(19)

and we have

$$\sum_{x \in \mathcal{X}} P(x) \log_2 \frac{q(x)}{P(x)} \le 0$$
(20)

as desired. We conclude

$$H(P) \le \bar{L}(P, \mathcal{C}) \tag{21}$$

for all uniquely decodeable \mathcal{C} .

3.1 The Information Inequality: A Brief Digression

Definition 2 (Kullback-Leibler Divergence). Let p and q be probability distributions on \mathcal{X} . Let

$$D(p||q) = \sum_{x \in \mathcal{X}} p(x) \log_2 \frac{p(x)}{q(x)}$$
(22)

This quantity is also known as relative entropy.

We can note a few things about the KL-divergence. First, we've already proved that $D(p||q) \ge 0 \forall p, q$. (As we saw, it's enough that $\sum q(x) \le 1$ – we're imposing a stronger condition when we require q to be a probability distribution.) We have that D(p||q) = 0 if and only if p = q. However, since D(p||q) is not symmetric and the triangle inequality does not hold, it is not a complete distance metric.

In practice, the KL-divergence acts as something like a norm-squared. If p and q are close, we have

$$D(p||q) \approx \sum_{x} (p(x) - q(x))^2 p(x) = ||p - q||_p^2$$
(23)

An analogy for this behavior is comparing the way the triangle inequality works to the general Pythagorean theorem. Here, a, b, c will be the sides of a triangle in Euclidean space. For the triangle inequality, we have that $a + b \ge c$ over all permutations of the sides. For the Pythagorean theorem, we have that $a^2 + b^2 = c^2$, or $a^2 + b^2 < c^2$, or $a^2 + b^2 > c^2$, all of which imply different things about the angles of the triangle that a, b, c make. We can do some work to define a notion of angle for probability distributions, but we will not go into that here. For more information about this sort of thing, look up **Information Geometry**.

4 To What Extent is H(P) a Lower Bound?

We might now have some questions regarding the tightness of the entropy lower bound on expected codeword length.

- Can we achieve H(P)? When and how often?
- If you can't achieve H(P), how close can you get?
- How do you construct the code of optimal expected length for a given distribution?

4.1 When and With What Frequency Can We Achieve H(P)?

If P(x) is a negative power of two (i.e., $P(x) \in 2^{-\mathbb{Z}^+} \quad \forall x \in \mathcal{X}$), then $L(x) = \log_2 \frac{1}{P(x)} \ge 0$ and $\sum_{x \in \mathcal{X}} 2^{-L(x)} = \sum_{x \in \mathcal{X}} P(x) = 1$, and we can therefore achieve the entropy bound with a uniquely decodeable code after applying the existence part of Kraft's Inequality.

Example 1. Suppose our probability distribution is $P = \{P(x_1) = \frac{1}{2}, P(x_2) = \frac{1}{4}, P(x_3) = \frac{1}{8}, P(x_4) = \frac{1}{8}\}$. Then we define $C = \{C(x_1) = 0, C(x_2) = 10, C(x_3) = 110, C(x_4) = 111\}$ and we can calcuate $H(P) = \frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{1}{8} * 6 = 1.75$. We also calculate $\bar{L}(P, C) = \frac{1}{2} * 1 + \frac{1}{4} * 2 + \frac{1}{8} * 6 = 1.75$, and we see we have equality.

In fact, the entropy can be achieved if and only if $P(x) \in 2^{-\mathbb{Z}^+} \quad \forall x \in \mathcal{X}$, and furthermore, we can achieve it with a prefix-free code.

4.2 How Close to H(P) Can We Get?

Theorem 3. $H(P) \leq \overline{L}^*(P) \leq H(P) + 1$, where $\overline{L}^*(P) = \min_{\mathcal{C} \in UD} \{\overline{L}(P, \mathcal{C})\}$.

Proof. If we have that $P(x) \notin 2^{-\mathbb{Z}^+}$ for some $x \in \mathcal{X}$, then $\log_2 \frac{1}{P(x)} \notin \mathbb{Z}$. Let $l(x) = \lceil \log_2 \frac{1}{P(x)} \rceil$. Then,

$$\sum_{x \in \mathcal{X}} l(x)P(x) = \sum_{x \in \mathcal{X}} \lceil \log_2 \frac{1}{P(x)} \rceil P(x) \le \sum_{x \in \mathcal{X}} (\log_2 (\frac{1}{P(x)}) + 1)P(x)$$
(24)

$$=H(P) + \sum_{x \in \mathcal{X}} P(x) = H(P) + 1$$
 (25)

Next time, we will show that

$$H(P) \le \frac{\bar{L}^*(X_1 X_2 \dots X_n)}{n} \le \frac{nH(P) + 1}{n} = H(P) + \frac{1}{n}$$
(26)

where we are considering the average minimum length after n trials X_1 through X_n . As n grows really large, the bound for the average minimum length shrinks more and more tightly just slightly above H(P).

4.3 Construction of Optimal Codes

The short answer is Huffman Codes. We'll go into more detail on this next time.