
Coding Theory and Random Graphs APC 529

Lecturer: Emmanuel Abbe Scribe: Kiran Vodrahalli

Contents

1 Introduction to Random Graphs 1
1.1 Erdős-Rényi random graphs . 2
1.2 Sharp versus Coarse Thresholds . 4
1.3 General results about monotone properties 5

2 Triangle Containment 5
2.1 Method of Moments . 6

3 Giant Components 8

4 Fourier Boolean Analysis 11

5 Hypergraphs, CSPs, planted CSPs, noisy CSPs 14
5.1 Random Hypergraphs . 14
5.2 Constraint-Satisfaction Problems (CSP)s . 15
5.3 Random CSPs . 15

6 Spectral Graph Theory 16
6.1 Graph Laplacian . 16
6.2 Polynomial interlacing . 17

6.2.1 An Application to Expander Graphs 18
6.3 Connectivity as a Minimization Problem . 20
6.4 Courant-Fisher and Algebraic Connectivity 20
6.5 Isoperimetric Constraint . 22
6.6 Cheeger’s Inequality . 23

7 Stochastic Block Model 23
7.1 Recovery . 23
7.2 Detection . 24
7.3 Recovery in the General SBM . 24

1 Introduction to Random Graphs

Definition 1.1. g = (V,E) is a graph means V is a finite set, typically V = [n], known as
the vertex set. E is the edge set, which is a subset of

(
V
2

)
(pairs of elements, unordered =⇒

undirected). We don’t allow loops or multiedges.

Remark 1.2. If you have a graph g, then we use the notation V (g) and E(g) to denote the
vertex and edge sets.

1

Definition 1.3. We say g ⊆ g′ if V (g) = V (g′) and E(g) ⊆ E(g′).

1.1 Erdős-Rényi random graphs

There are two models which are called Erdős-Rényi:

Definition 1.4. Uniform model.
G(n,m) where 0 ≤ m ≤

(
n
2

)
. This is a distribution on graphs with the vertex set V = [n]: If

G ∼ G(n,m), P {G = g} = 0 if |E(g)| 6= m, and 1

((
n
2)
m)

otherwise. We uniformly draw a graph

with exactly m edges.

Definition 1.5. Binomial model.
G(n, p) where 0 ≤ p ≤ 1, V = [n]. If G ∼ G(n, p), P {G = g} = p|E(g)|(1 − p)(

n
2)−|E(g)|. In

other words, we draw each edge independently with probability p.

Remark 1.6. In many cases, these 2 models lead to the same conclusions. If G1 ∼ G(n,m)
then |E(G1)| = m with probability 1. If G2 ∼ G(n, p), then |E(G2)| ∼ Bin

((
n
2

)
, p
)

then
E[|E(G2)|] = p

(
n
2

)
and var (|E(G2)|) =

(
n
2

)
p(1 − p). If the first and second moments of the

binomial are model are the same (which they will often be in this class) since we consider p
vanishing or constant, then we get concentration properties.

P

{
||E(G2)| − E[|E(G2)|]|√

var (|E(G2)|)
> 0

}
→ 0

Typically we will work with the binomial model.
We know that |E(G2)| =

∑
iXi where Xi ∼Ber(p). By the Law of Large Numbers,

1
n

∑
iXi → E[Xi] = p which then gives P {|

∑
iXi − np| > εn} → 0. We can think of this as

saying the two models get close to each other.

We can represent the graph as a Boolean function f . A graph g can be viewed as a

Boolean vector x ∈ {0, 1}(
n
2).

Definition 1.7. Graph properties.
A graph property is a subset of graphs. Notation: An is a graph property, i.e. a collection of
graphs on V = [n].

Example 1.8. An = {triangle containment} means formally that An is all the graphs such
that each graph has V = [n] and contains a triangle.

Definition 1.9. A graph property is

1. symmetric (invariant on the labeling of the vertices)

2. increasing (if you add edges to the graph, the graph will keep its property): if g ∈ A,
then g ∪ {e} ∈ A.

3. decreasing (if you add edges and the graph doesn’t have the property, the graph still
doesn’t have its property): if g 6∈ A, then g ∪ {e} 6∈ A.

2

Definition 1.10. Boolean representation of a graph property.

Take f : {0, 1}(
n
2) → {0, 1} for A, graph property. Then f = 1A.

Remark 1.11. If A is increasing, then 1A is increasing if x ≤ y, x, y ∈ {0, 1}(
n
2) implies

1A(x) ≤ 1A(y).

Definition 1.12. µp(An) = P {G ∈ An} when G ∼ G(n, p) (binomial model).

Lemma 1.13. If An is increasing, then p ∈ [0, 1] gets mapped to µp(An) is increasing. When
p moves, then probability that you have the property can only increase. It is not obvious to
show.

Proof. We begin with continuity. µp(An) =
∑

g∈An P {G = g} =
∑(n2)

m=1

∑
g∈An:E(g)=m p

m(1−
p)(

n
2)−m. This equation is a polynomial in p so this is a continuous function. It is not obvious

to say why this is increasing.
To show it is increasing, we use coupling. If you take 0 ≤ p, q ≤ 1 and take G1 ∼ G(n, p),

G2 ∼ G(n, q). Now construct G∆ ∼ G(n, δ). Let us look at G1 ∪ G∆ and say they are
independent. Then G1 ∪ G∆ ∼ G(n, 1 − (1 − p)(1 − δ)). Then we can choose δ such that
1 − (1 − p)(1 − δ) = q, giving δ = q−p

1−p (note q > p). Then µq(An) = P {G2 ∈ An} =

P {G1 ∪G∆ ∈ An} ≥ P {G1 ∈ An} = µp(An) by using the increasing property (if you add
edges it can only be more likely that you will get the property).

Pretty much everything in this class will be monotone. Thus, think of µp(An) as a
probability measure which is increasing on the interval [0, 1]. As you change the n and n
becomes large, a phase transition appears: A threshold such that if p is less than the threshold,
it is very low-probability, and if p is greater than the threshold, it is high probability. It turns
out that this threshold is in fact very sharp (step-function). For instance, connectivity has
such a jump but triangle containment does not.

Definition 1.14. Threshold.
From now on, {An}n≥1 is a sequence of symmetric increasing graph properties. {p̂n}n≥1 is
a threshold for {An}n≥1 if when you take pn << p̂n, then µpn(A) → 0 as n → ∞ and if
pn >> p̂n then µpn(A)→ 1 as n→∞. Our notation means

1. an = o(bn), or an << bn if an
bn
→ 0

2. an = O(bn) means that for n large enough, there exists c such that an ≤ cbn. For
instance, choosing an = 1

n
, bn = 2

n
− 1

n2 gives this result.

3. an = Ω(bn) means that for n large enough, there exists c such that an ≥ cbn.

4. an = Θ(bn) holds if an = O(bn), an = Ω(bn). Alternatively write an � bn.

Theorem 1.15. If An is symmetric increasing, then there exists a threshold. (Bollobas-
Thomasson)

Remark 1.16. By the definition of a threshold, this threshold is only unique up to constants.
If p̂ is a threshold, then it must be that cp̂ is also a threshold. Note that this theorem does
not tell you that the threshold is sharp. This is called the coarse threshold. As long as
it is increasing, you have this for free. After that, we will discuss conditions for the sharp
threshold.

3

An is an increasing property, p̂n is a threshold if µp̂n(An) = 0 if pn << p̂n and 1 otherwise,
where G ∼ G(n, p).

The first lemma we will use says that the converse of this is also true.

Lemma 1.17. If An is increasing and let Pn {ε} such that µPn{ε}(An) = ε for ε ∈ (0, 1).
Then p̂n � Pn {ε} iff p̂n is a threshold for An.

Remark 1.18. Since µPn{ε} is an increasing function, you get a single preimage.

Proof. First assume that p̂n is a threshold for An. Then if p << p̂n then µp(An) → 0, and
if p >> p̂n then µp(An) → 1. This implies that p̂n � Pn {ε} for all ε. If p̂n 6� Pn {ε} for
some ε, then either p̂n

Pn{ε} → 0 or → 1, given a contradiction. Each time, we should say

that there exists a subsequence (if limit not defined), and it’s on that subsequence we get a
contradiction.

For the other direction, assume that p̂n � Pn {ε} for all ε. But p̂n is not a threshold: Take
p s.t. p << p̂n and µp(An) → a > 0, and p >> p̂n and µp(An) → 1 − b < 1 for some b > 0.
Then p ≤ p(a) or p ≥ p(1− b)on the subsequences, thus a = µP{(}a)(An).

Now we prove the Bolllobas-Thomasson theorem: Every monotone graph property has a
threshold.

Proof. Let An be increasing, let ε ∈ (0, 1), G1, G2, · · · , Gm ∼ G(n,P {ε}) where µP{ε}(An) = ε
and ∼ is i.i.d. We have P {∪mi=1Gi ∈ An}, where the union G′ is drawn from G(n, (1 − (1 −
P {ε})m)). Then, 1−(1−P {ε})m ≤ mP {ε} Thus, if we replace with this other probability, it is
more likely and we have P {∪mi=1Gi ∈ An} ≤ µmP{ε}(An). Then note that 1−P {G1 6∈ An}m =
1− (1−P {G1 ∈ An})m = 1− (1− ε)m ≥ 1− ε = µp(1−ε)(An), we need (1− ε)m ≤ ε, which is

implied by m ≥ log(ε)
log(1−ε) . Thus, P {ε} ≤ P {1− ε} ≤ mP {ε}. If ε < 1/2 then P {1− ε} � P {ε}

for all ε ∈ (0, 1/2].

1.2 Sharp versus Coarse Thresholds

Definition 1.19. Width of a threshold.
For ε ∈ (0, 1/2] define δ(ε) = P {(} 1 − ε) − P {ε} where P {·} is defined for a monotone
property. From before we had δ(ε) = O(P {ε}). The question is, δ(ε) = Θ(P {ε})? Or
δ(ε) = o(P {ε})?

Definition 1.20. p̂ is coarse if ∃ε ∈ (0, 1/2] s.t. δ(ε) = Θ(p̂), and sharp if it equals o(p̂).
From previous lemma, any p̂ suffices.

Remark 1.21. Following statements are equivalent: p̂ is sharp and P{1−ε}
P{ε} → 1 for all

ε ∈ (0, 1/2]: In other words, the probabilities must agree on constants for sharp thresholds.
We have p̂1/p̂2 → 1. p̂ is unique up to ∼. It is also equivalent to saying µp(An) → 0 if
p ≤ p̂(1 − δ) ∀δ > 0 or 1 if p ≥ p̂(1 + δ). Let us go through some general results about
monotone properties.

4

1.3 General results about monotone properties

1. δε = O(P {ε})

2. δε = O(1
logn

) (Kalai ′96)

3. δ(ε) = O(1
(logn)2−δ

) (Bourgain and Kalai). It is believed the best you can do isO(1
(logn)2

).
These are only good for very slow thresholds, otherwise the first bound is better.

4. δ(ε)/P {ε} ≤ cε
log(2/P{e})

log(n)
. For instance, if p̂ = e−o(logn), then this is slower than 1/n.

The goal now is the following. We would like to understand when we have a coarse or a
sharp threshold when we have a monotone property. We will often have much faster decaying
thresholds.

Example 1.22. Emptiness.
We will argue this is sort of typical of coarse thresholds. This is the property that An =
{emptyness}, no edges on V = [n]. What is the probability this takes place? µp(An) =

(1 − p)(
n
2). If pc = c/

(
n
2

)
, then µpc(An) ∼ e−c and thus p1/2 is a coarse threshold (we have

exhibited a threshold as per Bollobas Theorem). This is basically saying we are K2 free
graph. What happens if we do K3-free graphs (i.e. triangle free)? We handle this next
week. We have |E(G)| ∼ Ber(

(
n
2

)
, p). We will eventually deal with any finite subgraph. For

coarse threshold, you have to allow a bag of some finite subgraphs, then if you take this bag
of models to be large enough, you can approximate the monotone property with this local
thing.

Example 1.23. Connectivity.
An example which is a sharp threshold is connectivity: You cannot check this locally, you
need to check the whole graph. It is a sharp threshold at logn

n
.

It is enough to look at in finite graphs that you count expected number of copies. We
have p̂ = n−α, where α ∈ Q for K2.

Example 1.24. How do you connect coding up to what we have discussed now? Recall
a graph can be expressed as a binary boolean vector. Consider the property An = {z ∈
{0, 1}n−1 : ∃x ∈ C, x1 = 1, xn2 ≤ 3}. C is a linear code; x ∈ C is a codeword. Then we want
to ask what is the probability we decode the first codeword wrongly. Can we cover a vector
which has 1 in the first component (x1 = 1), with a noise pattern where we replace erasures
with 1s (this is the xn2 ≤ 3)? The probability of erasures in Shannon setting is not erasing.
There is a missing piece that you can achieve the result you can achieve capacity. Just by
having a code which is linear, this has enoguh symmetry that you can apply the theorem.
The other thing you need is to be able to tell where the threshold is. You can locate the
threshold with a nice trick.

2 Triangle Containment

Recall last time that every monotone property has a threshold, which is either coarse (δ(ε) =
Θ(p(ε))) or sharp δ(ε) = o(p(ε)).

5

Example 2.1. “Containing an edge”: The # of edges ∼ Bin(
(
n
2

)
, p) in G(n, p). We have

that p = c/
(
n
2

)
is a coarse threshold. And in fact, we will have that as n → ∞, the # of

edges converges in distribution to Pois(c).

The goal today is to show that this type of result will go through.

Definition 2.2. The triangle continment property isAn = {∃i, j, k ∈ [n] all different s.t. Ei,j =
Ej,k = Ei, k = 1}.

Theorem 2.3. 1
n

is a coarse threshold for An.

We showed for edges it was c/
(
n
2

)
∼ 1/n2, here we show it is 1/n.

2.1 Method of Moments

We say X ∼ R+, X ∼ µ.

Theorem 2.4. Markov’s Inequality.
P {X ≥ a} ≤ E[X]

a

Proof. Assume X continuous.

E[X] =

∫
R+

xf(x)dx ≥
∫ ∞
a

xf(x)dx

where f(x) is the probability density function. Then∫ ∞
a

xf(x)dx ≥ a

∫ ∞
a

f(x)dx = aP {X ≥ a}

Thus we get the result by taking the lower bound of x out of the integral.

Theorem 2.5. Chebychev Inequality.
P {|X − E[X]| ≥ a} = P {|X − E[X]|2 ≥ a2} ≤ V ar(X)

a2

which is proven directly by applying Markov’s Inequality.

Lemma 2.6. Let Z ∼ Z+ (non-negative integers). Then

1. P {Z ≥ 1} ≤ E[Z]

2. P {Z = 0} ≤ V ar(Z)
E[Z]2

Proof. 1. Direct application of Markov’s Inequality.

2. P {Z = 0} = P {Z − E[Z] = −E[Z]} ≤ P {|Z − E[Z]| ≥ E[Z]}.

When you rely on these inequalities it is sometimes referred to as method of first and
second of moments.

Now we prove the first theorem we stated about the triangles.

6

Proof. Let Zk = # of triangles in G(n, p) =
∑

T∈([n]
3) 1(T ⊂ G). E[Zn] =

(
n
3

)
p3. Then, if

p << 1
n
, E[Zn] → 0. By the lemma, P {Zn ≥ 1} → 0 if p << 1

n
. Since we know triangle

containment is a monotone property, then we know there is a threshold. Thus 1
n

is a lower
bound on what the threshold can be. Then V ar(Zn) =

∑
S,T∈([n]

3)Cov(1(S ⊂ G),1(T ⊂ G)).

There are three cases:

1. S ∩ T = ∅. There is no covariance, so covariances are all 0.

2. |S ∩ T | = 1. You have to overlap on one edge, so you must choose how to choose the
five edges. The number of cases is c

(
n
4

)
, and the probability is p5 for any such case.

3. |S ∩ T | = 3; the triangles are on exactly the same location. There will be
(
n
3

)
such

cases, and the probability here will be p3.

Then, V ar(Zn) ≤ c
(
n
4

)
p5 +

(
n
3

)
p3 is an upper bound on the variance. If p >> 1

n
, then you

can check that V ar(Zn)
(n3p3)2

→ 0. By the lemma, we have proved that there are triangles since

P {Z = 0} goes to 0, implying that 1
n

is a threshold.

Note that if we look at the case p = c
n
, then E[Zn] = c3

6
which implies coarse threshold.

Now we ask about the probability distribution.

Theorem 2.7. When p = c
n

, Zn → Pois(c
3

6
) in distribution.

Definition 2.8. Converge in distribution.
If Xn ∼ R, then Xn →(d) X if P {Xn ≤ x} → P {X ≤ x} for all x that are continuity points
of n→ P {X ≤ n}.

If X is an integer, then convergence in distribution just means that if Zn →(d) Z,
P {Zn = k} → P {Z = k} as n→∞ for all k ∈ Z+.

Now I will explain the true Method of Moments. Before, we only considered expectation
and variance. When we try to prove things tend to each other in distribution, we instead
try to prove that the moments tend to each other in the limit. And if a distribution is
parametrized by its moments, this implies convergence in distribution.

Theorem 2.9. If Z has a distribution defined by its moments, if Zn has finite moments for
all order of the moments (i.e. E[Zk

n] is finite for every n), then if for all k ≥ 1 E[Zk
n]→ E[Zk]

as n→∞, this implies that Zn →(d) Z.

You can prove the central limit theorem with this kind of thing. You have a combinatoric
proof of the Central Limit Theorem by taking the moments and showing they go to Gaussian.
You can also prove that the Wigner semicircle theorem (distribution of eigenvalues of random
symmetric Bernoulli matrix) with the method of moments.

A common trick is to not really rely on the usual notion of moments, but to rely on
factorial moments.

Definition 2.10. A factorial moment (X)k = X(X − 1) · · · (X − k + 1) = X!
(X−k)!

.

Here is the outline of how we prove the theorem stated before.

Lemma 2.11. If Z ∼ Pois(c), E[Z]k = λk.

7

We still have the general theorem E[Zn]k → E[Z]k for all k implies Zn →(d) Z.

Proof. This is an outline for the second theorem.

E[Zn]k =
∑

T1,T2,··· ,Tk distinct and unordered triangles

E[1(T1 ∈ G) · · ·1(Tk ∈ G)]

which is the probability that P {T1, · · · , Tk ∈ G}. This equals

Sk + S ′k

where Sk is a contribution from the sum over disjoint triangles and S ′k is the rest. So Sk =(
n
3

)(
n−3

3

)(
n−2∗3

3

)
· · ·
(
n−3(k−1)

3

)
. You’re also multiplying by p3 for each of these contributions.

Then for k fixed, this product is � (c
3

6
)k since we take p = c

n
.

We skip the part where we show that S ′k is negligible since it must be less than the order
of this since there is overlap.

Can we generalize this? Let us suppose we take some other graph H that looks like a “P”.
There are 6 edges and we write E[Zn] �

(
n
5

)
p6 � n5p6 which is a constant if p = (c/n)5/6. We

claim that n−5/6 is a threshold and perhaps conjecture in general that n−VH/EH is a threshold.
What ends up being true is that if p << n−5/6, E[Zn] → 0 and P {Zn ≥ 1} → 0. Then

consider n−5/6 << p << n−4/5. By the same logic as before we see that n−(4/5) should be a
threshold. Let H ′ be the square graph with one diagonal (subgraph of H). This situation
implies that H ′ is not in G with high probability in the setting p << n−5/6. If you take the
densest subgraph of the graph and look at the ratio between vertices and edges, this will give
you the ratio. The catch gives us that H ′ ⊂ H but H ′ is denser.

Definition 2.12. m(H) = max{ eH′
vH′

: H ′ ⊆ H,H ′ 6= ∅} where e and v denote edges and

vertices in H ′.

Theorem 2.13. Theorem of Finite Graph Containments. (Bollobas)
For any H 6= {∅}, n−1/m(H) is a coarse threshold for containing H. This was proved for H
balanced (no denser subgraph).

Theorem 2.14. If H is balanced, p = cn−m(H), then Zn →(d) Pois(ceH
|Aut(H)|), where Aut(H)

is the automorphism group - counting the members is basically the number of ways to label
the graph H.

Example 2.15. H = Kt, then you get ck/k!. If H = Ck, then you get ck/2k.

3 Giant Components

Definition 3.1. A giant component is a connected component of size linear in the number
of vertices.

Definition 3.2. LCC(n, p) is the size of the largest connected comopnent in G(n, p). 2 −
LCC(n, p) is the size of the second largest connected component.

8

Remark 3.3. Recall that an event En holds with high probability if P {En} → 1 as n→∞.
This is also called asymptotically highly probable.

Theorem 3.4. (Giant Component, Erdös-Rényi 1960)

1. If c < 1, then with high probability, LCC(n, c
n
) ≤ 2.1

(1−c)2 log(n).

2. If c > 1, then with high probability, LCC(n, p) ≤ (1 + o(1))βn where β is a number
between 0 and 1, the solution to e−βc = 1− β. You can also say that 2− LCC(n, c

n
) ≤

βc
(1−c)2 log(n).

3. If c = 1, you have a component with hybrid size.

Proof. We will prove that there is no giant component with high probability if c < 1. Let v ∈
[n]. Define the following branching process: At each generation, the number of descendants
is independently drawn from Bin(n, c

n
) and also there is no collusion (parent nodes always

have different descendants). This defines a Galton-Watson tree. Let Cv be the connected

component of node v in G(n, c
n
). We want to bound P {|Cv| ≥ k} ≤ P

{∑k
i=1 Xi ≥ k − 1

}
where Xi are i.i.d Bin(n, c

n
). We can understand this inequality as saying the number of

children of the leaves is more than the number of leaves, at a certain point in the branching
process (we’re also including the original leaves actually in the sum). We defineDv = Cv−{v},
where Dv is the descendent of node v. First we have

P {|Cv| ≥ k} = P {|Dv| ≥ k − 1}

≤ P

{
k∑
i=1

Xi ≥ k − 1

}
= P

{
Bin(kn,

c

n
) ≥ k − 1

} (1)

Then we want to apply concentration of the binomial distribution to get the first part of the
theorem. Our goal is to show that for k logarithmic (maybe constant):

P
{

Bin(kn,
c

n
) ≥ k − 1

}
→ 0

The Chernoff bound gives, for X ∼ Bin(n, p) that

P {X ≥ E[X] + δ} ≤ e−
δ2

2(np+δ/2)

Then note that in the bound, E[X] = np = kc. Adding and subtracting kc gives us

P {X ≥ kc+ (k − 1− kc)} ≤ e−(1−c)2k/2 � n−1.05

by taking k = 2.1
(1−c)2 log(n). Thus P {∃v ∈ [n] : |Cv| ≥ k} ≤ n−1.05 → 0.

Theorem 3.5. (Connectivity, Erdös-Rényi 1960)

9

1. If c ≤ 1, then with high probabability G(n, c log(n)
n

) is not connected. At c = 1, you have
constant probability.

2. If c > 1, then with high probability, G(n, c log(n)
n

) is connected.

In the connected case, the expected number of edges is
(
n
2

) c log(n)
n

= c(n−1) log(n)
2

.

Proof. We first investigate node isolation. This is a property that gives you nodes that are
isolated.

Lemma 3.6. 1. If c < 1, G(n, c log(n)
n

) has isolated nodes with high probability.

2. If c > 1, G(n, c log(n)
n

) has no isolated nodes.

Proof. Let Z =
∑

v∈[n] 1(v is isolated in G).

E[Z] = nP {1 is isolated}
= n(1− p)n−1

= n

(
1− c log(n)

n

)n−1

� ne−c log(n) = n1−c

(2)

Thus E[Z]→ 0 if c > 1. By a lemma from last week, P {Z ≥ 1} → 0 if c > 1. This is how we
see c is a threshold for the behavior of connectivity. The p = c logn

n
regime is the boundary

line, the behavior is obvious if very far away from this threshold. We can see that if c > 1,
the number of isolated nodes goes to 0, and if c < 1, the number of isolated nodes blows up.

Now we have V ar(Z) =
∑

u,v∈[n] Cov(1(u is isolated), Cov(1(v is isolated)). If u = v,

then V ar(1(u isolated)) = P {u isolated} (1−P {u isolated}) � n−c(1−n−c). Then there are
n terms like this. If u 6= v, then V ar(1(u isolated, v isolated)) = P {u isolated, v isolated} −
P {u isolated}2 = (1 − p)(1 − p)2(n−2) − (1 − p)2(n−1). Then note that V ar(Z) ∼ E[Z] by
throwing out higher moment terms since they are much smaller and asymptotically do not
matter. Applying a lemma from before, P {Z = 0} ≤ V ar(Z)

E[Z]2
∼ 1

E[Z]
→ 0 if c < 1. If c = 1,

E[Z] = Θ(1).

To finish the proof, we need to show that for c > 1 the graph is indeed connected.
What we know from the lemma is that there are no isolated nodes, however this does not
imply full connectivity. We have to show that full connectivity happens. We want to show
P
{
∃S ⊆ [n] s.t. |S| ≤ n

2
, S disconnected from Sc

}
→ 0. Note that in a given S1, with k

vertices, the probability that none of the edges appear between S1 and Sc1 is (1− p)k(n−k).

P {∃S ⊆ [n] : |S| = k, S disconnected from Sc} ≤
(
n

k

)
P {S1 is disconnected from Sc1} (by union bound)

≤
(
n

k

)
(1− p)k(n−k)

(3)

10

Therefore,

P
{
∃S ⊆ [n] s.t. |S| ≤ n

2
, S disconnected from Sc

}
≤

n/2∑
k=1

(
n

k

)
(1− p)k(n−k)

Then p = c log(n)
n

. If k = 1, we have n(1− p)n−1: This is exactly the isolated node case, which
→ 0 if c > 1. For any constant, we have this behavior. If k = n/2, then this is large: this

becomes 2n−o(1)
(

1− c log(n)
n

)n2
4 � 2ne−n log(n)c → 0. Then you can formally split up the sum

and use the constant bound to send one half to 0, and the other half can be shown by the
linear size of k. Thus the whole sum goes to 0, and thus the desired probability goes to 0.

4 Fourier Boolean Analysis

The question we will ask in this section is as follows: Let f : Fn2 → R, where we restrict
to [0, 1]. We would like to know PX∼nFn2 {f(x) 6= f(x+ ei)}. This shows up when we study
graph properties.

Definition 4.1. L2 (Fn2 , µp) = {f : Fn2 → R : ‖f‖2
2 <∞} where ‖f‖2

2 =
∑
f 2(x)µp(x), where

µp is the product measure: µp(x) = p
∑n
i=1 xi(1−p)1−

∑n
i=1 xi . Then 〈f, g〉 =

∑
x∈Fn2

f(x)g(x)µp(x).

Note that 〈, 〉 is an inner product, and ‖ · ‖ is the induced norm.

We would like an orthonormal basis for this space. The first one is just the canonical
basis, simply for every s ∈ Fn2 define Dirac δS(x) = 1 if x = s and 0 otherwise. This clearly
forms a basis since you can express every function. A more interesting orthonormal basis is
the Fourier-Walsh basis. For now, we will let p = 1/2. The Fourier-Walsh basis with this
setting is given by χS : Fn2 → {−1,+1}, χS(x) = (−1)x·S, and x · S =

∑n
i=1 xiSi. Then

{χS}S∈Fn2 form an orthonormal basis.
Now we check that it is a basis. First we check 〈χS, χT 〉. We want this to be 0 if S 6= T, 1

if S = T . We only have 2n elements, which is the dimension of the space. If all of these
functions are orthonormal, then none of them can be linearly dependent and we have a basis.
Then we write

〈χS, χT 〉 =
∑
x∈Fn2

χS(x)χT (x)2−n

=
∑
x∈Fn2

(−1)X·(S+T)2−n

= 1 (S = T)

(4)

since if S = T, S ⊕ T = 0 and the expression is 1. If S 6= T , S ⊕ T = U . Then by symmetry,
there are the same number of U which have an even number of ones and an odd number of
ones when we consider all x. Thus, half of the sum is positive and half the sum is negative,
and the whole sum is 0 since we are adding a constant 2−n.

Recall that a Fourier basis for L2(R, λ) means X̃w → e2πiwx, and 〈X̃w, f〉 = f̂w. Well,
what similarities do these two bases have? We note that the values lie in between [0, 1].
The product of two elements X̃w1X̃w2 = X̃w1+w2 , i.e. a homomorphism between the groups.

11

These X̃w are known as characters, and there is a whole theory about decompositions into
characters.

Note since {χS}S∈Fn2 is a basis, we define f̂(S) = 〈f, χS〉 then f =
∑

S∈Fn2
f̂(s)χS.

Lemma 4.2. Familiar Fourier Transform Properties.

1. 〈f, g〉 = 2n〈f̂ , ĝ〉 =
∑
f̂(s)ĝ(s). Note this is analgous to Parseval’s Lemma.

2. ˆf ∗ g = f̂ ĝ where f ∗ g(y) =
∑

y∈Fn2
f(x+ y)g(y)2−n, where we can write x+ y since we

are in Fn2 instead of x− y.

Proof. When you have the structure of the characters, these properties should hold.

First we explain the Parseval-esque equality.

2n〈f̂ , ĝ〉 =
∑
s

f̂(s)ĝ(s)

=
∑
s

∑
x

f(x)(−1)xs
∑
y

g(y)(−1)xy2−n2−n

=
∑
s

∑
x,y

f(x)g(y)(−1)(x+y)s2−2n

=
∑
x

f(x)g(x)2−n = 〈f, g〉

(5)

where if x 6= y, the term is 0 by orthonormality, so we only get the terms where y = x
and we sum over s to eliminate the other 2−n.

1.2. f̂(0) = P {f(x) = 1} , f̂(ei) = 1
2
− P {f(x) = xi}. Now we want to explain the meaning

of the Fourier coefficient. We can think of s ∈ Fn2 or as a set s ⊆ [n] (the set of indices
for which si = 1). Note f̂(0) =

∑
x∈Fn2

(−1)0f(x)2−n =
∑

x f(x)2−n. From now on we

will consider f : Fn2 → F2. Then
∑

x f(x)2−n = P {x ∼ Fn2} f(x) = 1. We also have

f̂(ei) =
∑

x(−1)ei·xf(x)2−n =
∑

x f(x)(−1)xi2−n. xi = 0 or xi = 1:∑
x

f(x)(−1)xi2−n =
∑

x∈Fn2 ,xi=0,f(x)=1

f(x)2−n −
∑

x∈Fn2 ,xi=1,f(x)=1

f(x)2−n

= P {f(x) = 1, xi = 0} − P {f(x) = 1, xi = 1}
= P {xi = 0} − P {f(x) = 0, xi = 0} − P {f(x) = 1, xi = 1}

=
1

2
− P {f(x) = xi}

(6)

If we have f(x) = x1 (a dictatorship), then only f̂(e1) = −1
2
, all other values are 1

2
. The

output is fully correlated with x1. Then we can write f̂(x) = 1
2
−P {f(x) = ⊕i∈sxi}. It

is telling you how much the output of the function correlates with the variables making
up the vector x, the xi.

12

The Fourier coefficients reflect the influence of the variables xi on the output of f(x).

Definition 4.3. f : Fn2 → R, let Ii(f) = Px∼nFn2 {f(x) 6= f(x⊕ ei)}, and I(f) =
∑

i∈[n] Ii(f).

Lemma 4.4. Influence lemma.

1. Ii(f) = 4
∑

i∈s f̂(s)2: You sum over all i in s, then si = 1.

2. I(f) = 4
∑

x∈Fn2
|s|f̂(s). This follows from the first statement directly.

Proof. We prove the first statement in the lemma. Let fi(x) = f(x + ei). When you do
Fourier, you either have a convolution and do products, or you see a norm and use Parseval.

Ii(f) = P {f(x) 6= f(x+ ei)}

=
∑
x∈Fn2

(f(x)− f(x+ ei))
2 2−n

= ‖f − fi‖2
2

= 2n‖f̂ − f̂i‖2
2

=
∑

f̂(s)f̂i(s)

=
∑
x

f(x+ ei)(−1)x·s2−n

=
∑
y

f(y)(−1)y·s2−n(−1)si = f̂(s)(−1)si

(7)

and thus f̂ − f̂i = 0 if si = 0 and 2f̂(s) if si = 1. Therefore

Ii(f) = 2n‖f̂ − f̂i‖2
2

= 2n ∗ 4f̂ 2(s)

= 4
∑
si=1

f̂ 2(s)

= 4
∑
i∈s

f̂ 2(s)

(8)

Now we generalize to p 6= 1
2
.

Definition 4.5. χi(x) =
√

p
1−p if xi = 0 and −

√
1−p
p

if xi = 1. Then χs(x) =
∏

i∈s χi(x).

Theorem 4.6. {χs}s is an orthonormal basis for µp.

Now, what about the influence of the coefficients?

Lemma 4.7. Ii(f) = 1
p(1−p)

∑
i∈s f̂

2(s) and I(f) = 1
p(1−p)

∑
s |s|f̂ 2(s).

In some areas of computer science and theory this is well known, but it is not used in
other areas, and it seems like an important tool. Now how does this tool connect to random
graphs, and in fact to coding theory?

13

Theorem 4.8. (Russo, Margulis).
If A is an increasing graph property and ∂

∂p
µp(A) = I(1A).

Proof. Fix i ∈ [n]. Then xi = {(xi−1
1 , xni+1) ∈ Fn−1

2 : f(xi−1
1 , 0, xni+1) = 1, f(xi−1

1 , 1, xni+1) = 1},
and yi is defined analagously. Define p = (p1, · · · , pn). Then µp(A) = µq(xi) + piµi(yi) where
q = (p1, · · · , pi−1, pi+1, · · · , pn) which works since A is a monotone property. The probability
you have the property A is the sum of the cases where you did not activate the ith component
and the probability that you did activate the ith component, and this allows us to separate
things into independent components. The first term does not depend on pi so the derivative
with respect to pi is 0. Thus ∂

∂pi
µp(A) = 0 + Ii(1A), and then the chain rule means that you

have to sum over these guys and you get the result.

Now, why must coarse thresholds must be for local properties? If you are coarse, it means
that your jump is moderate. If your jump is moderate, it means that ∂

∂p
µp|p(1/2) <

1
c
. All

we are saying is that the window δ(1/2)
p(1/2)

> c. As long as we know that 1 − p(1/2) is going

to 1, we can put 1 − p(1/2) for free outside, since that is just going to 1. Then we see that

(1 − p(1/2))p(1/2) δ(1/2)
p(1/2)

= I(1A) < 1/c, but this means
∑

s f̂
2(s)|s| < 1

c
from the theorem

from before. Therefore,
∑

s:|s|≥L f̂(s) ≤ 1
cL

. We have δ
p
> c which implies I(1A) = I(f) < c′

and thus
∑
|s|<L f̂

2(c) < c′′, and f concentrates on small graphs. This shows that the Fourier
energy must concentrate on small sets, and will show you how to get the kinds of results we
have gotten.

5 Hypergraphs, CSPs, planted CSPs, noisy CSPs

Definition 5.1. A hypergraph is a generalization of a graph where “edges” can cover ≥ 2
vertices called hyperedges (often, “hyper” is removed). The set of all possible hypergraphs
of order k on n vertices is denoted

(
[n]
k

)
: G = (V,E) is a hypergraph, and E ⊆

(
[n]
k

)
. Often,

hypergraphs are represented in a factor or bipartite form (put all block edges on one side,
and all other edges on the other side).

5.1 Random Hypergraphs

An analog to the Erdös-Renyi model Gk(n, p), and you draw an edge with probability p. The
topology of Gk(n, p) is roughly similar to G2(n, p).

Example 5.2. Connectivity.
Connectivity happens at αc = 1/k if p = α log(n)n

(nk)
. Roughly speaking, 2α = c where c is the

variable used in the previous description of G2(n, k).

Remark 5.3. Usually, p = c
n

or p = c log(n)
n

for Erdos-Renyi with k = 2. But, p = αn

(nk)
or

p = αn log(n)

(nk)
for Gk(n, p). Note that the expected number of edges in G(n, αn

(nk)
) is
(
n
k

)
αn

(nk)
= αn,

so α is edge-density. However,
(
n
2

)
c
n

= cn
2

.

14

Example 5.4. Giant component.
The back of the envelope calculation requires you to take a node, and count the expected
number of neighbors it has (neighbors are vertices). You have

(
n−1
k−1

)
possible edges, pick each

edge with probability p. Each time you pick an edge, you get k − 1 neighbors. Then there
are (k − 1)

(
n−1
k−1

)
∗ p, if p = αn

(nk)
∼ αn

nk/k!
. So (k − 1)

(
n−1
k−1

)
∗ p ∼ (k − 1)kαcn, so αc = 1

k(k−1)
.

5.2 Constraint-Satisfaction Problems (CSP)s

Definition 5.5. A Boolean CSP is defined by

1. A k-hypergraph G = (V,E)

2. ∀e ∈ E, φe : Fk2 → F2

The decision problem is: Does there exist an assignment to x1, · · · , xn where φe(x[e]) = 1 for
all e ∈ E where x[e] = (xi1 , · · · , xik) when e = (i1, · · · , ik).

Example 5.6. k-SAT.
A clause must have φe(x[e]) = 1(x[e] 6= se) for all e, let se ∈ Fk2. So there is some forbidden
pattern which cannot exist. An equivalent form of k-SAT is defined by a Boolean formula
(x1 OR x̄2 OR x7) AND (x̄1 OR x̄6 OR x̄11) AND Here, we want to avoid a false output
for any of the clauses: For instance, the first clause (1, 2, 7). For this clause, se = (0, 1, 0).

Remark 5.7. 2-SAT is in P , but k ≥ 3, k-SAT is NP -complete (one of Cook’s 21 NP-
complete problems).

Example 5.8. k-XORSAT. φe(x[e]) = 1(⊕i∈exi = se), se ∈ {0, 1} is always in P for all k.

Now complexity theory is a worst-case scenario: There are some cases which are very
hard, but this is not the case for all versions of the problem! What about average case
analysis? We may want to know how easy it is to solve the average case.

5.3 Random CSPs

Definition 5.9. A random CSP in the “uniform” or “binomial” model has G ∼ Gk(n, p)

and φe ∼ µ on FFk2
2 (power set), all functions which can go from Fk2 → F2.

Claim 5.10. The SAT conjecture (in the context of a random model).
For all k ≥ 2,∃αk ∈ R+ such that if p = αn

(nk)
, and Fk(n, p) is a random k-SAT formula, then

for all ε > 0, P {Fk(n, αk − ε) is SAT} → 1 and P {Fk(n, αk + ε) is SAT} → 0 as n→∞.

The status of this problem is that for k = 2, it is proved. For all k ≥ 2, it was proved
by Friedgut that there is a sequence of αk αk(n) which moves with n such that it limits to a
step function (so sharp threshold) up to scaling. We do not know if it converges to a single
αk. We do have that αk(n) = Θ(1). There is strong evidence that this should converge to
a specific number. We have lots of bounds, upper bounds and lower bounds for this αk.
From Berkeley last year, it was proved there is some K such that if k ≥ K, then αk(n) does
converge. However, k = 3 is still open.

15

The idea of Friedgut’s result is to show that being satisfiable is not a local property. First,
begin UNSAT is an increasing property (the more you add edges and constraints, the more
likely you are to be UNSAT). Now it has a threshold that’s coarse or sharp. Second, F ∼
Fk(n, α) and choose α such that P {FUNSAT} = 1

2
and show ∃ε > 0 P {FUNSAT|H ⊂ F} ≤

1
2

+ ε. If you are nonlocal you must have a sharp threshold. Then P {F UNSAT|H ⊂ F} ≤
P {F UNSAT|x1 · · ·xr = 1}, where H is a finite formula with r variables. Now F ∗ is a random
formula with r variables frozen to 1. Then the expected number of size k clauses (edges) is
� n, and the expected number of size k−1 clauses (edges) is � 1. If you go to k−2 and more,
it will be vanishing to 0. If you look at a random hypergraph on n variables and r vertices,
each time you select a hyperedge with one of your guys, instead of being a 3 edge, it becomes
a two edge. The computation you have here is basically nk−1 αn

nk
. Now you you basically only

have edges of order k and k − 1. The last thing LAST ≤ P {F ∗∗ unSAT} means
(
n−r
k

)
2k

possible k-clauses, and you pick them with probability αn

(nk)2k
(1/2k is probability of se). We

would like to make this look as though we had worked with n − r variables. So we change
it to α(n−r)

(nk)2k
+ ε (it costs us an epsilon). Then we add a constant number of (k − 1)-clauses

to make the problem harder, and we show that if we replace the constant number of (k − 1)
clauses with a logarithmic number in n of clauses, it doesn’t change the difficulty.

The main takeaway from this proof is as follows: If one day you expect a problem where
you sharp threshold, you should follow this kind of path. First is it monotone, then you
know there must be a threshold. You would like to say it’s sharp and not coarse. If the
property seems to be local, then you can apply this blackbox theorem and say it must in fact
have a coarse threshold. If it is sharp, then you have to follow a path like this. What is the
probability it has the property I’m interested in? Now we have to show this won’t blow up
to one. By conditioning on a fixed subgraph, you restrict the problem in a way such that
you hope to see it does not change to much. Then having controlled the extent to which it
blows up in this restricted case, you go back to the unrestricted case and show that if you
let it be unrestricted, it still won’t blow up to 1.

Basically, this is a branch of mathematics where you have an alternative to standard
central limit type arguments. Another option is martingale type arguments.

6 Spectral Graph Theory

Hi, I’m Adam Marcus in Fine 1110.

6.1 Graph Laplacian

Definition 6.1. Graph Laplacian matrix.
A =

∑
(i,j)∈E(δi − δj)(δj − δi)

T , where δi is the vector with 1 in the ith coordinate and 0
everywhere else. We can also write it as LG = DG − AG where AG is the adjacency matrix
of the graph and DG is a diagonal matrix where Di,i = deg(vi), vertix i.

LG is always symmetric and positive semidefinite, since it is a sum of positive semidefinite
things. It also has eigenvalue 0 with corresponding eigenvector [1, 1, 1, · · · , 1]T . Some people
like to use the adjacency matrix, but one of the benefits of the Graph Laplacian is that
it is PSD. If H is a subgraph of G, then LH ≤ LG, in other words, LG − LH is PSD.

16

LG =
∑

e∈E(G) Le as well. We can also write LG =
∑

i λiviv
T
i where vi are orthonormal and

λi ≥ 0 (the eigenvalues) and 0 = λ1 ≤ λ2 ≤ · · · ≤ λn. λ2 = 0 iff G is not connected. Thus λ2

can be thought of as a quantitative version of connectivity: the conductance of the graph and
the worst way of splitting things up so that there is a bottleneck between the two places (we
will see these results shortly). We can also write λn ≤ 2∆(G), where ∆(G) is the maximum
degree of G.

Let us say we start with a graph G. We can do G→ LG, and then adding an edge ê gives
LG → LG + Lê.

Lemma 6.2. Matrix Determinant Lemma.

det (xI − LG − Le) = det
(
xI − LG − eeT

)
= det (xI − LG)

(
1− eT (xI − LG)−1e

)
= p(x)

(
1−

∑
i

〈e, vi〉2

x− λi

) (9)

where p(x) is the original characteristic polynomial.

Now we might wonder what happens when we add an average edge, as we do in proba-
bilistic combinatorics. We want to know how big it becomes. If we add something to add to
the average, then we could assert there is something better than the average, but it turns out
that the contribution doesn’t do anything. 1

(n2)

∑
e Le, which has 2/n on the diagonal and

−1/
(
n
2

)
elsewhere. Then LG + 1

(n2)

∑
e Le = LG′ . But this is no good as a bound. In higher

dimensions, you can add a vectors that should both increase the trace by 1, but you change
the eigenvectors differently.

6.2 Polynomial interlacing

Let’s try something different. Let us define q(x) = p(x)
(

1−
∑

i
〈e,vi〉2
x−λi

)
and assume p(x) has

n distinct roots λi. Now either a root of q(x) is a root of p(x), or the other thing is zero.
Since x = λi cancels out due to the x − λi term in the denominator. So roots come from
the other term. Then if we add an edge, the average root of the second term must go up by
some positive value, by the formula we derived before: We will have that the the averages µi
must have λi < µi < λi+1, and λn < µn. This property is called interlacing. Our question
focuses on asking what edges we can add. Now, instead of averaging over random matrices,
we are going to try averaging over random polynomials and seeing what happens.

1(
n
2

)∑
e

det
(
xI − LG − eeT

)
= det(xI − LG)

(
1− 1(

n
2

)∑
e

∑
i

〈e, vi〉2

x− λi

)
= q̃(x)

(10)

But this q̃(x) may not make sense, since things could be real or complex, and we don’t know
how to compare complex numbers properly. However, due to the interlacing property, it
turns out this makes sense.

17

Theorem 6.3. Let p1, · · · , pn be real rooted polynomials, and let q be a polynomial that
interlaces all of the pi.

1. p̂ =
∑

i αipi, αi ≥ 0,
∑

i αi = 1 has all real roots.

2. For all k, ∃i, j such that λk(pi) ≤ λk(p̂) ≤ λk(pj).

Proof. Let us zoom in on the interval between λt and λt+1. WLOG all pi(x) ≤ 0 at t.
This implies that all pi(x) ≥ 0. Thus at t, p̂(x) ≤ 0, and at t + 1, p̂(x) ≥ 0. Thus
somewhere inbetween, p̂(x) = 0. p̂ has n real roots since this happens n times. Now if
we have a bunch of numbers that up to 0, one must be less than or equal to zero and
one must be greater than or equal to zero. Then det(λI − LG) = p(x) = xp̃(x). Then,

1

(n2)

∑
e det(λI − LG − eeT) = q(x) = xq̃(x). Then q̃(x) = p̃(x) − 2

n
p̃′(x). There exists some

edge e such that λ2(G+ eeT) ≥ λ2(p̃(x)− 2
n
p̃′(x)).

A big open question is how to find the correct edge to add.

Theorem 6.4. Let G have characteristic polynomial xp(x) and H have characteristic poly-
nomial xq(x). Then,

1

n!

∑
perms π

det
(
λI − LG − πTLHπ

)
= x

(∑
i

p(i)(x/2)q(n−i−1)(x/2)

)
(11)

We can assert that the polynomial is real rooted.

Now rather than looking for a common interlacer polynomial of the whole thing, let us
look for interlacers of subsets, and find a convex combination, and then check if the results
have common interlacers, and so on. This is called an interlacing family. Then you can
go all the way down. This is a way of nicely weakening the idea.

How do we build an interlacing family? Before, we were simply adding some rank 1 matrix
(eeT) to our matrix. Let us add a bunch of rank 1 matrices. We can define a choice vector
σ ∈ [n]m, where σi is the index of a vector. If you choose these vectors independently, you
get an interlacing family.

6.2.1 An Application to Expander Graphs

If G is d-regular, then DG = dI and LG = DG − AG, 0 ≤ λi(LG) ≤ 2d, −d ≤ λ(AG) ≤ d.
So we know that d is an eigenvalue of AG, and if G is bipartite, then −d is an eigenvalue. If
you are looking for a well-expanding bipartite graph, for doing expander codes, then you are
essentially forced to have eigenvalues at d,−d. So what happens to λ3 and up? G is a good
expander spectrally if you can get the eigenvalues clustered around 0. There is an interval
[−2
√
d− 1, 2

√
d− 1], called the Ramanujan interval. If all eigenvalues are in this interval,

then this is a Ramanujan graph and an infinite collection is called a Ramanujan family.

Theorem 6.5. (Alon, Boppana 1996).
No smaller interval can contain all nontrivial eigenvalues of an infinite collection of d-regular
graphs.

18

The “ultimate” d-regular expander is the d-regular infinite tree, and all eigenvalues of the
d-regular infinite tree lies in the Ramanujan interval, and it turns out that this interval is
related to the d-regular infinite tree.

Theorem 6.6. Margulis, Lubotsky-Phillips-Sarnak (1988).
Ramanujan families exist for d = p+ 1, where p is a prime number.

This proof used the work of at least 4 Fields Medals. It was extended by Morganstern to
d = pk + 1. All these constructions are algebraic. You look at the Cayley graph of the group
and use all these high-powered results to show that because of all the symmetries involved,
you can’t have big eigenvalues. On the other hand, almost everything is almost Ramanujan.

Theorem 6.7. (Friedman (2008)).
A randomly chosen d-regular graph has its non-trivial eigenvalues in the interval

[−2
√
d− 1− ε, 2

√
d− 1 + ε] (12)

You can use the characteristic polynomial result to show that for all bipartite graphs
that the spectrum of eigenvalues is within the Ramanujan interval. We use bipartite since
in bipartite graphs, the eigenvalues come in pairs: If λ is an eigenvalue, so is −λ of the
adjacency matrix.

Therefore,

Theorem 6.8. There exist bipartite Ramanujan families of degree d for any d.

Proof. (sketch). Set G0 = Kd,d, which is bipartite, d-regular, and Ramanujan for any d.
Given Gi, form Gi+1 using the lifting technique. By the theorem previously stated, this is
an interlacing familiy. Using some other results, you can show that Gi+1 is also Ramanujan
(lifts and others), and then proceed by induction to show you have a Ramanujan family.

Remark 6.9. These results are used in sparsification, traveling salesman, etc. If you could
find a way to efficiently find an edge e which would work, you would be able to improve a lot
of current computer science algorithms. Currently the only way to find the edge is to brute
force search 2dn of them. We only guarantee it works. In fact, even finding one coefficient
of one of these polynomials is NP-complete. You would probably have to find some other
insight into what’s happening. Adding the edge e is building the graph in the direction that
the graph is most connected.

Remark 6.10. If you look at all the ways you can add a perfect matching to the bipartite
graph, you can find a way to make it an interlacing family so that you can assert there is
always some way to do it. Friedman proved his result by adding random matchings to his
random graph. This exact method has a way of always working to get you a Ramanujan
graph. We don’t know how to actually do it without randomness unfortunately.

As far as coding theory goes, there is a situation in graphs where you know what the
best thing you could possibly do is: The infinite d-regular tree. But you can’t use infinitely
many things. You have to use finite resources to get the best thing you could do. This is
in some sense the same problem as a code: You are in a finite space for a code, since you
cannot space things out exactly the way you want, so you take some penalty. It seems that
interlacing polynomials could be interesting to show the existence of new codes.

19

6.3 Connectivity as a Minimization Problem

Let us start with a toy problem: You are given a graph G and you want to cluster it into
two parts. One idea might be to project G onto a line, and then maybe you will split up the
components. Of course, this projection might not respect anything that the graph is doing.
But maybe there is some way we can ensure that vertices which are in the same cluster
end up close together. So the goal is if x ∼ y (adjacent) in G, then |f(x) − f(y)| is small.
Well in particular, maybe you could try min

∑
(x,y)∈E(G)(f(x) − f(y))2. There are a couple

problems with this right from the start. First, this minimum is clearly 0, and this can happen
whenever f(x) and f(y) are constant functions and equal. Well, how about we modify it so
that we minimize over functions which are orthogonal to constant vectors: f : 〈f, 1〉. Well
the infimium will still be zero, since we aren’t normalizing with respect to the size of f . We
can just add ‖f‖2 = 1. Thus our problem is

min f :〈f,1〉=0,‖f‖2=1

∑
(x,y)∈E(G)

(f(x)− f(y))2

(13)

So we recognize this as a quadratic form, which we can now write as g(x) = xTAx where A
is a real symmetric matrix. Let’s figure out what the matrix A should be. Consider the case
where our graph is a single edge between two vertices. Then [f(0), f(1)] [a bb c] [f(0), f(1)]T =
(f(0)− f(1))2 = af(0)2 + 2bf(0)f(1) + cf(1)2, so we want our matrix to be A =

[
1 −1
−1 1

]
.

We can write our previous problem as

C(G) = min
x:〈x,1〉=0

xTLGx

xTx
(14)

This expression in the minimization is called the Rayleigh quotient.

Theorem 6.11. C(G) 6= 0 iff G is connected.

Proof. If G is disconnected, then there are two subgraphs G1, G2 not connected. Let us say
f(x) = t on G1, f(x) = s on G2. Then C(G) is 0 after we figure out how to be orthogonal to
the all 1s vector, and it will be fine.

If G is connected, then x and y have a path between them, and we want f(x) 6= f(y).
Then there is some edge for which f(z) 6= f(w), and if we subtract the two and square it, it
will not be zero.

Thus this minimization problem is able to encode “being connected”. It assigns values to
how connected the graph is: It is no longer just a qualitative statement. Depending on how
you define mixing time, in fact you can define mixing time with respect to C(G) directly.

6.4 Courant-Fisher and Algebraic Connectivity

For A a matrix, vector v non-zero which satisfies Av = λv for some λ ∈ C is an eigenvector
and λ is an eigenvalue. Then (λI − A) v = 0, thus det(λI − A) = 0. Then setting the
characteristic polynomial equal to 0 recovers the eigenvalues. Then to find the eigenvectors,
you look at the Ker(λI−A) and check algebraic multiplicity and geometric multiplicity, and
so on. However in the case of real symmetric matrix, we have the spectral theorem.

20

Theorem 6.12. Spectral Theorem.
For any real symmetric matrix A,

1. All of the eigenvalues are real.

2. There exists v1, · · · , vn eigenvectors which form an orthonormal basis.

Letting V = [v1, · · · , vn], then V V T = I and V TAV =

 λ1 0 ···

0
...

...
... ... λn

, so V diagonalizes A, and

λ1 ≤ λ2 ≤ · · · ≤ λn. Thus we can write

A =
∑
i

λiviv
T
i (15)

Now we can write xTLGx =
∑

i λi〈x, vi〉2. Since λ1 = 0, we can see that

min
x:〈x,1〉=0

xTLGx

xTx
= λ2 (16)

We can generalize this to the following theorem:

Theorem 6.13. Courant-Fisher.
A has eigenvalues λ1 ≤ · · · ≤ λn and associated eigenvectors v1, · · · , vn. Then,

min
x⊥{v1,··· ,vk}

xTAx

xTx
= λk+1 (17)

and its argmin is an eigenvector.

Definition 6.14. λ2(G) is called the algebraic connectivity.

Restating our theorem from before, we get that G is connected iff λ2(LG) > 0.

Example 6.15. Kn the complete graph on n vertices. The eigenvalues of Kn are 0 with
multiplicity 1 and n with multiplicity n − 1: Thus all non-trivial eigenvalues are very far
away from 0.

Example 6.16. Sn the star on n vertices has eigenvalues 0 with multiplicity 1, 1 with
multiplicity n− 2, n with multiplicity 1.

Example 6.17. The hypercube in dimension Hn has eigenvalue 0 with multiplicity 1, and
2k with multiplicity

(
n
k

)
.

Example 6.18. Consider the path graph. Its eigenvectors are kind of like a Fourier basis, if
you plot the eigenvectors (each of which have n components, n→∞).

Example 6.19. The cycle graph looks similar to the path graph eigenvalues and eigenvectors,
except with more discrete jumps.

Let us see what happens when we add an edge. Suppose G has characteristic polynomial
pG(x) = det (xI − LG). G′, which has the added edge, has pG′(x) = det(xI − LG − wT).
Then we write

det(xI − LG)det(I − wT (xI − LG)+) = p(x)(1− vT (xI − LG)+v)

= p(x)

(
1−

∑
j

〈v, uj〉
x− λj

)
(18)

where (uj, λj) are eigenvector and eigenvalue pairs of G.

21

6.5 Isoperimetric Constraint

Definition 6.20. Isoperimetric constant.
Given a graph G, set vertices S, then

δS = {(u, v) ∈ E : u ∈ S, v 6∈ S} (19)

This essentially bounds S. The isoperimetric constant of S is

Θ(S) =
|δS|

min |S|, |S̄|
(20)

and

ΘG = min
S

Θ(S) (21)

We claim that

Theorem 6.21. Θ(S) ≥
(

1− |S|
|V |

)
λ2

Proof. We have λ2 = minx:〈x,1〉=0
xTLGx
xT x

. We want to find a particular x such that xTLGx ≈
|δS|. Let us define x such that x(v) = 1 − t if v ∈ S, and −t otherwise. Then, choosing

t = |S|
n

,

xTx =
∑
v∈S

(1− t)2 +
∑
v 6∈S

t2

= |S|
(
1− 2t+ t2

)
+ (n− |S|)t2

= |S|
(
1− 2t+ t2

)
+ |S|t− |S|t2 = |S|(1− t)

(22)

Then

xTLGx =
∑

(u,v)∈δS

((1− t) + t)2 = |δS| (23)

Thus xTLgx

xT x
= |δS|
|S|(1−t) ≥ λ2, and thus

Θ(S) ≥ λ2

(
1− |S|

n

)
(24)

which implies ΘG ≥ λ2
2

.

Now recall that in Hn, λ2 = 2. Thus, this proof implies that for any S ⊆ Hn, |δS| ≥ |S|.
You can do this combinatorially, but it gets messy and not as nice. Also, this inequality is
sharp: The number of edges coming out of one face of the hypercube is exactly the number
of vertices that are in it.

22

6.6 Cheeger’s Inequality

Let ρG be a normalized version of ΘG (“conductance”), and ν2 be a normalized version of λ2

(weight your Laplacian by dividing by the average degree).

Theorem 6.22. Cheeger’s Inequality.

η2

2
≤ ρG ≤

√
2η2 (25)

Thus, when η2 is constant size, ρG is “trapped” as a function of η2. This says the
conductance and the minimum eigenvalue are basically the same. This η2 is constant when
there is a constant degree over the graph.

This is why having expanders are so important: You want your graphs to be very connec-
tive, but on the other hand, you need to have a constant degree. An expander is a constant
degree graph which is as close to having properties of the complete graph as you possibly
can.

7 Stochastic Block Model

7.1 Recovery

This is analagous to giving better bounds in the connectivity setting. The first theorem we
proved is that for the setting where p = a logn

n
, q = b logn

n
, that

Theorem 7.1. We can recover with high probability when |
√
a−
√
b| ≥

√
2.

The intuition for this is to calculate the probability of a bad node (more out of community
connections than in community connections) in one of the communities, which by symmetry

will appear in the other community with probability n
−
√
a−
√
b√

2 . Then the idea is that you
swap these paired bad nodes to improve the result. A trick is that if you have 99% of the
graph correct, you can clean up the graph by making all the switches, and you will clean

up iff n1−
√
a−
√
b

2 , which means you hit the condition. In order to get 99% correct, you can
express as an SDP. Let A be the connectivity graph, and x ∈ {−1, 1}n have 1 to denote one
community and −1 denote the other for each of the n nodes. Then

max
xi∈{±1},x1=0

xTAx (26)

is the problem. The combinatorial part is the restriction ±1. We can lift this by taking
Tr(xTAx) = Tr(AxxT) = Tr(AX). This trick is called lifting. Our constraints are now
X > 0 in the positive definite sense, X1 = 0, and rank(X) = 1. The NP-hard part is the
rank(X) = 1 aspect. It turns out that throwing out this constraint still gives an SDP that
achieves the threshold.

23

7.2 Detection

This is analgous to giving better bounds in the giant component setting. In the setting where
p = a

n
, q = b

n
, there is detection iff (a − b)2 > 2(a + b), which was given by Massoulié. We

(Abbe et al) gave a positive result for weak recovery (this is the same as detection, > 50% of
the communities). First there is a giant if (a+b)/2 > 1. From proof from a previous class, we
have no giant if (a+ b)/2 < 1. Now you set up a branching process. Imagine x1 ∼ Ber(1/2).
If x1 = 0, then what is the probability P {x2 = 0 : E12 = 1, x1 = 0} = p

p+q
= a

a+b
.

To achieve the threshold, majority voting works in the case of 2 communities after you
set up this broadcasting problem from noisy propagation through the tree. It is believed to
work up to 5 communities, where it breaks down; however, nothing has been proven for > 2
communities yet.

7.3 Recovery in the General SBM

Let us take SBM(n, p,W). Define the degree profile of a node v ∈ [n] by counting its
neighbors in each group. Let us say W = logn

n
Q, where Q ∈ Rk×k. The expected number of

neighbors a node in community i has in community j is npjWij = log(n)pjQij. If v is from
community 1, then the degree profile dv ∼ Pois (log(n)(PQ)1). Because the graph is sparse,
it still behaves like a Poisson distribution. The first column gives the number of neighbors.
If v ∈ community j, then dv ∼ Pois (log(n)(PQ)j). So now if a node is atypical, we would
like to close our eyes, get given a node from one of the four groups, and put it in the middle.
We only know how many friends it has in each group. Then we want to tell which group it
came from. This is a hypothesis testing problem. Each community has different multinomial
Poisson distribution. Then you select the thing with the most likely hypothesis, and it turns
out you get the original community. You can do a tournament to select the winner (pairwise
comparisons). In each step, you select the correct hypothesis as long as you look at your two
big Poisson processes. The mass in the overlap between the distributions tells you how much
you screwed up. You have to estimate the area of intersection is n−D+((PQ)1‖(PQ)2).

This looks a lot like something you have seen before: In channel coding, we ask the
question when is x1 paired with y. When is it that x1 → y looks more typical than x2 → y?
It looks like e−nD(P◦W‖PxW).

Theorem 7.2. Recovery in the General SBM occurs if

min
i<j,i,j∈[k]

D+((PQ)i‖(PQ)j) ≥ 1 (27)

This divergence is not the KL-divergence.

Definition 7.3. CH-Divergence.

D+(x‖y) = max
t∈[0,1]

∑
i∈[k]

(
txi + (1− t)yi − xtiyti

)
(28)

So this is the fundamental limit of clustering. If t = 1/2, this is the Hellinger divergence.
If these add to 1, you get the Chernoff divergence. So we call it Chernoff-Hellinger, since it
is a generalization of both.

This was originally defined by Csiszor who defined f -divergences.

24

Definition 7.4. f -divergence.

Df (x‖y) =
n∑
i=1

yif(xi/yi) (29)

You can recover the KL-divergence by choosing f(u) = u log(u). The realization in the
1960s was that choosing f to be convex, there are nice properties. These other families have
similar properties, but KL-divergence is the correct one in the original setting.

Sham Kakade tried to replicate the clustering result for topic learning recently. In prob-
lems where there are a phase transition, you can do similar things.

In general, you would like to infer when a bunch of things have specific featuers, and you
get to observe their interactions. This interaction is typically noisy. Now out of these many
local interactions, you hope that you have enough to denoise the system to reconstruct the
figures you care about. The more edges and interactions you see the better, but also the more
noisy the system is, the more difficult it is. These results go beyond the spectral results, and
also tells you

25

	Introduction to Random Graphs
	Erdos-Rényi random graphs
	Sharp versus Coarse Thresholds
	General results about monotone properties

	Triangle Containment
	Method of Moments

	Giant Components
	Fourier Boolean Analysis
	Hypergraphs, CSPs, planted CSPs, noisy CSPs
	Random Hypergraphs
	Constraint-Satisfaction Problems (CSP)s
	Random CSPs

	Spectral Graph Theory
	Graph Laplacian
	Polynomial interlacing
	An Application to Expander Graphs

	Connectivity as a Minimization Problem
	Courant-Fisher and Algebraic Connectivity
	Isoperimetric Constraint
	Cheeger's Inequality

	Stochastic Block Model
	Recovery
	Detection
	Recovery in the General SBM

