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1 Group Definitions

First we introduce the primary object of study in these lecture notes.

Definition 1.1. Group.
A group is a set G equipped with a binary operation · such that the following properties
hold:

1. Associativity: (xy)z = x(yz) for all x, y, z ∈ G.

2. Identity: ∃e ∈ G such that xe = ex = x for all x ∈ G.

3. Inverse: For each x ∈ G, ∃x−1 ∈ G such that xx−1 = x−1x = e.

Definition 1.2. Abelian Group.
A group is said to be abelian if the group operation is commutative: That is, if xy = yx for
all x, y ∈ G.

Definition 1.3. Generation.
A group is said to be generated by elements {x1, · · · , xn}, all in G, if by applying the group
operation between members solely in this set one is able to completely construct all the
elements in G.

Now we give some properties for all groups. Take G:

1. ∃ one identity element e ∈ G.

2. xy = xz implies that y = z, and yx = zx implies that y = z.

3. For each x ∈ G there exists precisely one inverse x−1.

4. Inverses have (xy)−1 = y−1x−1.

Now we give some more useful definitions:

Definition 1.4. Order.
The order of a group G is denoted |G| and means the number of elements in the group. The
order of an element x ∈ G is denoted |x|. Let |x| = k, then xk = e.

The subgroup is akin to the notion of subspace from linear algebra:

Definition 1.5. Subgroup.
A subgroup of group G is a subset H ⊆ G such that the set H is also a group when equipped
with the binary operation · of the group G. H is a subgroup if and only if for all a, b ∈ H we
have ba−1 ∈ H. This simultaneously tests closure, and the presence of identity and inverse
in H. When all elements have finite order, we can simply check that H is closed under ·. We
denote H ≤ G or H ⊆ G to denote subgroup. {e} is the trivial subgroup.

2



1.1 Some Special Subgroups

Here we list some interesting subgroups.

Definition 1.6. Finite Order Subgroup.
If we have an infinite group G and take the subset of elements with finite order, this subset
forms a subgroup.

Definition 1.7. Abelian-Product Subgroup.
If G is abelian and H,K ≤ G, then we have that HK = {hk : h ∈ H, k ∈ K} is a subgroup
of G as well. Note that this statement does not hold in general for G non-abelian.

Definition 1.8. Cyclic Subgroup.
Let a ∈ G. We denote 〈a〉 the set of elements {· · · , a−3, a−2, a−1, e, a, a2, a3, · · · }. 〈a〉 is a
subgroup of G. In general, if there are multiple elements between the brackets, then we mean
all possible combinations of those elements.

Now we come to a very important subgroup.

Definition 1.9. Center Subgroup.
We let Z(G) denote the center of subgroup G, defined to be

Z(G) = {a ∈ G : ax = xa for all x ∈ G} (1)

In other words, the center is the set of elements which commute with all elements of G. Note
that considered alone, Z(G) is abelian.

Now we define a subgroup analagous to the center, parametrized by group element g:

Definition 1.10. Centralizer Subgroup.
The centralizer subgroup C(g) for an element g ∈ G is defined by {a ∈ G : ag = ga}. The
center is a subgroup of every centralizer: Z(G) ⊆ C(g).

Here is another very important subgroup, which will be used later on:

Definition 1.11. Conjugate Subgroup.
Take a subgroup H and a fixed x ∈ G. Then the conjugate subgroup of H with respect to x
is given by

xHx−1 =
{
xhx−1 : h ∈ H

}
We also note that conjugating by an element preserves order: That is, |xax−1| = |a|.

Definition 1.12. Normalizer.
Let H be a subgroup of G. Then, the normalizer

N(H) =
{
x ∈ G : xHx−1 = H

}
In other words, it is the set of elements of G for which conjugation is closed within the
subgroup. We will later see how the normalizer is related to the notion of normal subgroup
(it is the largest normal subgroup which contains H).
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1.2 Conjugacy

We use the notion of conjugates to define the extremely important concept of conjugacy
class: However, these are not subgroups.

Definition 1.13. Conjugacy Class.
For each a ∈ G, consider the set {xax−1 : x ∈ G}. This is the conjugacy class of a. The
conjugacy classes of G partition G into nonintersecting subsets.

Definition 1.14. x, y ∈ G are conjugate elements if ∃a ∈ G s.t. y = axa−1.

Definition 1.15. The conjugacy class of x is the set of all elements which are conjugate to
it: {axa−1|∀a ∈ G}.
Theorem 1.16. The relation (x is conjugate to y) is an equivalence relation where the
conjugacy classes are the equivalence classes under this relation, and they partition G into
disjoint subsets.

Proof. By Midterm exam.

Example 1.17. Let V be a vector space over R or any field F of dimension n. (V,+, 0) is
an additive group. Then GLn(R) consists of automorphisms of V . Let A ∈ GLn(R). If you
fix a basis B of V and A is with respect to V , this gives a linear transformation T : V → V .
If you have another basis B′, then the matrix of T w.r.t. B′ is SAS−1 where S is the change
of basis matrix.

Example 1.18. Conjugacy Classes of Dn

Recall every element of Dn is Rk or RkE where E is some reflection. Since R and E generate
the group, we can find all conjugacy classes by finding RxR−1 and ExE−1 for all x ∈ Dn.
As an example: (RE)x(RE)−1 = R(ExE−1)R−1. Here’s a table of conjugacy classes of Dn. x = 1 Rk RkE

RxR−1 Rk Rk+2E
ExE−1 R−k R−kE


Lemma 1.19. If x ∈ Z(G), then the conjugacy class of x is {x}.
Proof. axa−1 = (xa)a−1 = x(aa−1) = x since x is in the center.

Note that the conjugacy class of RkE preserves parity: either (−k) or (k + 2) happens.

Definition 1.20. Given a ∈ G, the conjugation φa : x → axa−1 is an automorphism of G.
The set of all such automorphisms is a subgroup of Aut(G) called the inner automorphisms,
or Inn(G).

Claim 1.21. The map G→Inn(G) (call a ∈ G, φa ∈Inn(G)) is a homomorphism.

Proof. φa is a homomorphism because φa(xy) = axya−1 = axa−1aya−1 = φa(x) ·φa(y). Then
φa is bijective because it’s invertible: Its inverse is x→ a−1xa. Inn(G) is a subgroup because
φab · x → (ab)x(ab)−1 = a(bxb−1)a−1 = φa(φb(x)). Thus φab = φa · φb which is composition
(multiplication in Aut).

Remark 1.22. Inn(G) can differ from G in that φa can = φb even if a 6= b.

Example 1.23. If a ∈ Z(G), then φa = id. x→ axa−1 = xaa−1 = x if a is in the center of
the group.

Corollary 1.24. If G is abelian, Inn(G) is trivial.
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1.2.1 Conjugacy in Sn

Theorem 1.25. In Sn, if α ∈ Sn and β = (b1b2b3 · · · bk) is a k-cycle, then αβα−1 =
(α(β1)α(β2) · · ·α(βk)).

Proof.
αβα−1(α(bi)) = α(β(α−1(α(bi)))) = α(β(bi)) = α(bi+1)

If y ∈ {1, · · · , n} is not of the form α(bi), then α−1(y) is not one of the bi, β fixes α−1(y); α
sends it to αα−1y = y.

Remark 1.26. If β = (β1β2 · · · βl) where βj are cyclic, then αβα−1 = αβ1α
−1αβ2α

−1 · · ·αβlα−1.

Example 1.27. (123)(186243)(123)−1 = (286341).

Theorem 1.28. The conjugacy classes in Sn are exactly the sets of permutations of a given
shape.

Example 1.29. The conjugacy classes of S3 by row are (..), (...).

2 Examples of Groups

Now we define several common groups and identify their properties.

2.1 Cyclic Groups

Recall the cyclic subgroup definition from the previous section. We simply call any 〈a〉 a
cyclic group, where it is understood that the exponents of a range over Z. Noteably, these
subgroups are abelian. We will later see that a cyclic group of order n is isomorphic to Zn,
the group on the set {0, · · · , n− 1} with addition mod n. We also note that this group is
ismorphic to the unit group U(m), where n = φ(m) where φ(m) is the Euler totient function,
defined as follows:

Definition 2.1. Euler totient function.
The Euler totient φ(m) counts the number of relatively prime integers to m strictly less than
m. For instance, φ(p) = p − 1, where p is prime. Furthermore, the following factorization
property holds: φ(m ∗ n) = φ(m) ∗ φ(n) if m,n are relatively prime (have gcd(m,n) = 1).

We now list some properties of cyclic groups. Let G = 〈a〉 with |G| = n.

1. ai = aj iff i = j if G is infinite order; otherwise, ai = aj iff i ≡ j mod n.

2. The order of a is the order of the cyclic group: |a| = |〈a〉|.

3. If ak = e, then k = n ∗m for some integer m. In other words, k is a multiple of the
group order.

Now we come to a fact important enough to be designated a theorem.

Theorem 2.2. We present three related facts about G = 〈a〉 in this theorem.
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1. 〈ak〉 = 〈agcd(n,k)〉

2. |ak| = n
gcd(n,k)

3. Every subgroup of G is also cyclic, and there exists a unique subgroup of G of order m
for each positive divisor m of n. These are given by 〈an/m〉.

4. The number of elements of order k in G is φ(k).

That is to say, all k ≤ n with the same gcd with respect to n are in the same cyclic
subgroup, and the order of that subgroup is given by n divided by the gcd. Also, cyclic groups
decompose into subgroups with order the positive factors of the original group. Take the
subgroup with order k: This subgroup can be generated by φ(k) elements of G.

Note that

Corollary 2.3. # Elements of Order k in a Finite Group.
There are m ∗ φ(k) elements of order k in a finite group, since if there is only one cyclic
subgroup of order k, there are precisely φ(k) elements which can generate it. If there are m
distinct cyclic subgroups of order k, they must be disjoint, and therefore there are m ∗ kφ(k)
elements of order k.

2.2 Permutation Groups

A permutation group is is a set of permutations of a set A which forms a group under the
operation of function composition. A permutation is a bijection from [n] → [n]. We denote
the permutation in cyclic form, where reading from left to right gives the sequence of which
number leads to which number. For instance, 1→ 2→ 1, 3→ 4→ 3 by (12)(34). As another
example, we could write (123)(56) to denote 1→ 2→ 3→ 1 and 5→ 6→ 5.

Definition 2.4. Symmetric group Sn.
We denote the group of permutations on n elements by Sn, with the group operation of
function composition, where the order of action on an element x is from right to left. For
instance, (12)(23)x means (23) acts on x first, and then (12) acts on the result. If x = 2, we
would have (12)(23)2 = (12)3 = 3. If x = 3, we would have (12)(23)3 = (12)2 = 1.

The order |Sn| = n! since there are n! total possible permutations of n distinct elements.

Permutations have distinct form when expressed in terms of disjoint cycles. That is, a
number from [n] appears in one and only one cycle in the cycle composition. Furthermore,
disjoint cycles commute. Let ()k denote a cycle of order k. Suppose that the following element
is a composition of disjoint cycles:

x = ()k1()k2 · · · ()km
Then, the order of x is |x| = lcm(k1, · · · , km).

Permutations also have distinct form when expressed in several permutations of the form
(..). The number of (..) a permutation decomposes to tells whether or not a permutation is
even or odd (even if the number is even, odd otherwise).

The subset of permutations which are odd does not form a subgroup. However, the subset
of permutations which are even does:

Definition 2.5. Alternating Group An.
The subgroup of Sn consisting of only even permutations is given by An. We have |An| = n!

2
.
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2.3 Dihedral Groups

The dihedral groups are the groups of symmetries of regular polygons in the plane. They are
perhaps one of the simplest classes of nonabelian groups, as they can essentially be thought
of as two cyclic groups paired together, each with a different orientation, “face up” or “face
down”.

Definition 2.6. Dihedral group Dn.
We have |Dn| = 2n, and it is generated by R,F , where R is a rotation of 2π/n radians and
F is a flip across an aribtrarily chosen axis of symmetry in the regular polygon with n sides.
We have the following rules:

1. Rn = e, F 2 = e.

2. FRkF = R−k.

2.4 GLn, SLn, PSLn

GLn is the general linear group on n× n matrices. We sometimes write GLn(F) where F is
typically R, C, or finite field Zn to denote the field the matrix is over. The only requirement
on the matrices is that they have full rank/are invertible/have non-zero determinant. SLn is
the subgroup with determinant 1. PSLn is the subgroup of SLn quotiented by the center.

Theorem 2.7. |GLn(Zq)| =
∏n−1

i=0 (qn − qi).

Proof. The order of GLn(Zq) is (qn−1)∗(qn−q)∗(qn−q2)∗· · ·∗(qn−qn−1) =
∏n−1

i=0 (qn−qi).
We can see this by noting that there are qn − 1 nonzero possible first rows. The second row
must not be a linear combination of the first row. There are only q multiples of the first row,
thus there are qn− q possibilities for the second row. Then, there are q2 linear combinations
of the first two rows which must be avoided for the third row, and thus there are qn − q2

possibilities. Thus, for the ith row, there are qn − qi possibilites and we have our result.

The order of SLn(Zq) is
∏n−1

i=0 (qn−qi)
q−1 , which will follow from the First Isomorphism Theorem

(we will see this later on) after realizing that the determinant is a homomorphism from
GLn(Zq)→ Zq, and that the restriction to SLn(Zq) is the kernel of this homomorphism.

3 Isomorphisms

3.1 Isomorphism Properties

Definition 3.1. Homomorphisms.
A homomorphism of groups is a map f : G→ G s.t. f(xy) = f(x) · f(y).

We can think of non-surjective homomorphisms from G → G as maps which realize a
group G in a subgroup of G, and non-injective surjective homomorphisms as maps which
“project” a larger group G to a smaller group G.

Definition 3.2. Isomorphisms.
A homomorphism of groups that is bijective is an isomorphism. We write G ∼= G.
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An isomorphism is a one-to-one map which preserves algebraic structure, and the phrase
“identical up to isomorphism” means that for all algebraic intents and purposes, two groups
are equivalent.

Theorem 3.3. Cayley’s Theorem.
Every group is isomorphic to a group of permutations.

We can think of this theorem as saying that a group element applied to every element
of the set is equivalent to a permutation of the set of group elements since each group mul-
tiplication produces another group element. Formally, we define the permutation functions
πg(x) = gx. This theorem is deeply related to the results about group actions we discuss
later.

Now we list some properties of isomorphisms. Let φ : G→ G be an isomorphism. Then

1. φ(eG) = eG.

2. φ(an) = φ(a)n, and thus orders are preserved.

3. φ−1 : G→ G is an isomorphism.

4. All group properties (abelian-ness, cylic-ness, etc.) and substructures (subgroups, cen-
ter, numbers of elements of a given order) are preserved across an isomorphism.

3.2 Automorphisms

Definition 3.4. Automorphisms Aut(G).
An automorphism of G is an isomorphism φ : G→ G. The set of all automorphisms of G is
called Aut(G).

Definition 3.5. Inner automorphism Inn(G).
Let G be a group with a ∈ G. Then the automorphism φa(x) = axa−1 is called an inner
automorphism of G induced by a. The set of all inner automorphisms of G is called Inn(G).

Theorem 3.6. The sets Aut(G) and Inn(G) are groups under function composition.

Proof. If φ, ψ : G→ G are automorphisms, then φ · ψ is a homomorphism because

φ · ψ(xy) = φ(ψ(xy)) = φ(ψ(x) · ψ(y)) = φ(ψ(x)) · φ(ψ(y))

Then we have that φ · ψ is a bijection since φ, ψ are both bijections. We get inverses since
if it’s a bijection there exists an inverse function. Then id : G → G is an automorphism,
id(xy) = xy = id(x) · id(y).

Example 3.7. Aut((Z6,+, 0)) is a cyclic group of order 2. Z6 has two elements of order 6,
namely 1 and 5. Any isomorphism must carry an element of order 6 to another of order 6.

Claim 3.8. Aut(Z6) = {id, f} where f(1) = 5. We have 0 → 0. If a homomorphism
sends 1 → 1, it must send x → x for all x ∈ Z6, so it is the identity. You can also try
to send 1 to 5: f(2) = f(1 + 1) = f(1) + f(1) = 5 + 5 = 10 mod 6 ≡ 4 mod 6. Then
f(3) = f(2 + 1) = 4 + 5 = 9 mod 6 ≡ 3 mod 6. Then f(4) = f(2 + 2) = f(2) + f(2) = 20
mod 6 = 2, and f(5) = f(4) + f(1) = 2 + 5 mod 6 = 1.
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Theorem 3.9. U(n) ∼= Aut(Zn).

1. Every homomorphism f : Zn → Zn has the form f : x→ ax for some a ∈ Zn.

2. Every automorphism φ : Zn → Zn has the form φ : x→ ax for some a ∈ U(n).

3. The homomorphism Φ : U(n)→ Aut(Zn) given by Φ(a) = (x→ ax) is an isomorphism,
and thus U(n) ∼= Aut(Zn).

Proof. 1. Set a equal to whatever f(1) is. Then by induction, f(x) = f(1 + · · · + 1) x
times, so this equals f(1) + · · · + f(1) = ax. So f : x → ax. Then, x → ax is a
homomorphism because f(x+ y) = a(x+ y) = ax+ ay = f(x) + f(y).

2. First if φ : x → ax is an automorphism, it’s surjective: ∃x0 such that ax0 = 1 which
implies a is a unit with inverse x0. Second, if a ∈ U(n), let b = a−1 mod n. We have
φa : x→ ax, φb : x→ bx. Then φa · φb = id, since x→ a(bx) = (ab)x = 1x = x, which
implies φa invertible and thus bijective.

3. Part (b) proved that Φ is bijective. It’s a homomorphism because Φ(ab) = (x →
(ab)x) = x→ a(bx) = φa ·φb = Φ(a) ·Φ(b) where · is function composition. This is like
functional programming.

4 Cosets

Definition 4.1. A left coset of H in G is a set of the form aH = {ah : h ∈ H} for a ∈ G.

Definition 4.2. A right coset of H in G is a set of the form Ha = {ha : h ∈ H} for a ∈ G.

Call a a coset representative.

Example 4.3. Find the left and right cosets for G = S3, H = 〈(12)〉; |G| = 6, |H| = 2.
For the left cosets, we have eH = {e, (12)}. Then (123)H = {(123), (13)}. (132)H =
{(132), (23)}. For the right cosets, we have He = {e, (12)}, H(123) = {(123), (23)}, H(132) =
{(132), (13)}. There are three of each kind of coset, and there are always 2 elements per coset.

If G is non-abelian, then the left and right cosets are different in general.

Example 4.4. Let G = (R2,+, 0). Let H = some line through the origin. Then the cosets
are the lines parallel to H (we have (a+H) is a line shifted away that is still parallel to H).

Example 4.5. Let G = Dn where |G| = 2n. Let R be the unit rotation and E be some fixed
reflection. Let H be the subgroup generated by R, 〈R〉. We proved earlier that G = H ∪EH
and also G = H ∪HE. These are disjoint unions since H is all the rotations, and EH and
HE is all the reflections.

Remark 4.6. Coset representatives are not unique. For G = S3, we showed that (123)H =
{(123), (13)} = (13)H.

Subgroups and equivalence relations were made for each other.
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Theorem 4.7. Define a relation ∼ on group G by saying a ∼ b iff ∃h ∈ H such that a = bh.
Then ∼ is an equivalence relation and its equivalence clases are the left cosets. (If you define
a ∼ b if a = hb, then the classes are right cosets).

Proof. We check reflexivity, symmetry, and transitivity. We see a ∼ a because a = ae, and
e ∈ H. Now assume a ∼ b, then a = bh. Then taking inverses, we see ah−1 = b and h−1 ∈ H
by subgroup property. Thus b ∼ a. Then if a ∼ b, b ∼ c, we have that a = bh1, b = ch2. Then
note that a = ch1h2, and h1h2 ∈ H under closure of subgroups. Therefore a ∼ c and we are
done. The proof for right cosets being an equivalence relation is analagous. Since ∼ is an
equivalence relation we have Sa = {ah : h ∈ H} = aH by definition. These give a disjoint
partition {Sa}a∈H of G.

Theorem 4.8. Any two left cosets aH and bH have the same cardinality. This also implies
|aH| = |H| since e ∈ H.

Proof. Define f : G → G by x → (ba−1)x. Then observe that the restriction of f to aH
maps ah→ bh (x = ah, then f(x) = (ba−1)ah = bh ∈ bH. Define g : G→ G by x→ ab−1x.
Then the restriction of g to bH maps to aH, and thus this is an inverse function since
g ◦ f(x) = ab−1ba−1x = x and similarly f ◦ g is also identity, implying bijectivity. Thus aH
and bH have the same cardinality.

Remark 4.9. The bijection G→ G by x→ x−1 maps the set of left cosets bijectively onto
the set of right cosets. Consider (aH)−1 = {(ah)−1 : h ∈ H} = {h−1a−1 : h ∈ H} = {h0a−1 :
h0 ∈ H} since H is closed under inverses. Now this is a right coset, Ha−1! Thus any theorem
about left cosets is also a theorem about right cosets, you just invert the whole group.

4.1 Lagrange’s Theorem

Theorem 4.10. Lagrange’s Theorem.
If G is a finite group and H is a subgroup, then |H| is a divisor of |G|. The number of left

cosets for H is |G||H| .

Proof. G is partioned by left cosets of H and each coset is finite and has the same number
of elements as any other coset (that was the last theorem we proved). Each coset has |H|
elements. Therefore |G| = k|H| and the result follows, where k is the number of cosets.

Definition 4.11. The index of H in G, denoted [G : H] is the number of left cosets of H.

Corollary 4.12. If |G| is finite, then [G : H] = |G|
|H| .

4.2 Applications of Lagrange’s Theorem

Corollary 4.13. If G is finite and a ∈ G, then the order |a| is a divisor of |G|.

Proof. Well note that |a| = |〈a〉|. Then letting H = 〈a〉 the cyclic subgroup, by applying
Lagrange’s theorem we get the result.
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Now let us consider some interesting questions: Find all groups of order 6 up to isomor-
phism. Are Z6 and S3 the only ones? Well we know that U(7) ∼= Z6, and we know that
D3
∼= S3. We know that these two groups are not the same, since one is abelian and one is

non-abelian. Morever, there is no element of order 6 in S3. Well, it turns out these are the
only two groups of order 6 up to isomorphism, which we will get to next time. Now how
about all groups of order 2p, where p is an odd prime? How about p2? We will do these next
time.

There’s one question we can answer right now though.

Corollary 4.14. All groups of prime order p are cyclic. There is only one group of order p
for each p up to isomorphism.

Proof. Let |G| = p. Choose a ∈ G, a 6= e. Then |a| divides p hence is 1 or p by Lagrange’s
theorem. By we said |a| 6= 1, therefore |a| = p! Thus G is cyclic and generated by a.

Corollary 4.15. If G is finite,
a|G| = e

for all a ∈ G.

Proof. Pick a ∈ G, then |a| = n||G| by Lagrange’s theorem. Then a|G| = ank → (an)k = ek =
e.

Definition 4.16. The exponent of G is the smallest positive integer n = exp(G) s.t. for all
a ∈ G, an = e.

Example 4.17. In D4, exp(D4) = 4 since R4 = e, (R3)4 = 3, e4 = e, and E2 = e.

Theorem 4.18. Fermat’s Little Theorem.
If p is prime and a ∈ Z, then ak ≡ a mod (p).

Proof. We have that |U(p)| = p − 1. Then choose a ∈ Z. If p|a, then a ≡ 0 mod (p) and
0k ≡ 0 mod (p). If p 6 |a, then they are relatively prime and a ∈ U(p). Then we know that
a|U(p)| ≡ 1 mod (p), and thus ap−1 ≡ 1 mod p and we get the result by multiplying both
sides by a.

The converse of Lagrange’s theorem is false in general: If n||G|, there may not be a
subgroup H with |H| = n.

Theorem 4.19. A4 which has order 12 has no subgroup of order 6.

We will note as a fact that this is the smallest example of a subgroup of order 12.

Proof. Assume the contrary, that there is some H ≤ A4 with |H| = 6. A4 has elements of
order 3, and in particular, 8 of them: (123), (234), (134), (124) and each of their inverses,
(321), (432), (431), (421). Let a be an element of order 3. Then we claim that a ∈ H. If it
were not, then A4 = H ∪ aH and we have a partition of 2 sets of order 6. Which piece is a2

in then? If a2 ∈ H, then (a2)2 = a4 = a ∈ H which is a contradiction since it will be in aH.
If a2 ∈ aH, then a ∈ H, again contradiction. Thus a ∈ H. Since a was arbitrary among the
order 3 elements, there are at least 8 elements in H, which contradicts |H| = 6, and thus we
are done.
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Another useful theorem following from Lagrange is given here:

Theorem 4.20. Size of product.
Let the set HK = {hk : h ∈ H, k ∈ K} for H,K subgroups of G. Then,

|HK| = |H| ∗ |K|
|H ∩K|

5 Classifying Group Isomorphisms

Theorem 5.1. If p is an odd prime, then any group G of order 2p satisfies either G ∼=
Z2p, G ∼= Dp.

Proof. The order of any element of G must divide |G| = 2p. Any element has order 1, 2, p, 2p.
If there were a ∈ G of order 2p, we’d be done: 〈a〉 has order 2p, G = 〈a〉, G is cyclic of order
2p. From now on assume all elements have only 1, 2, p as possible orders.

Lemma 5.2. With these hypotheses, G has an element a of order p.

The Sylow theorems are all about proving that a group will always have a subgroup of
order p, p2, etc. There is a beautiful theory here. Today we will do things ad-hoc.

Proof. Suppose every element has order 1 or 2. Then G is abelian. b, c ∈ G order 2, bc is
also of order 2. (bc)2 = e → bcbc = e → cb = b−1c−1. We have |G| ≥ 6 (p ≥ 3). Pick b ∈ G
of order 2, pick c ∈ G s.t. c 6∈ 〈b〉. Then {e, b, c, bc} is a subgroup of order 4. However,
4 6 |2p since p is odd... This is a contradiction by Lagrange’s Theorem. Thus we must have
an element a of order p.

Thus we may take a ∈ G of order p; |G| = 2p > p = |〈a〉|, so can choose b ∈ G, b 6∈ 〈a〉.
Then 〈a〉 ∩ 〈b〉 has order < p. Yet 〈a〉 ∩ 〈b〉’s order must divide p which implies that 〈a〉 ∩ 〈b〉
has order 1. If b did have order p then |〈a〉〈b〉| = |〈a〉|·|〈b〉|

|〈a〉∩〈b〉 = p·p
1

= p2. So G has at least p2

distinct elements. But p2 ≤ 2p since these elements are in G implying p ≤ 2. So b has order
2. The same argument shows ab, a2b, a3b, · · · have order 2. This sounds dihedral! Define
f : Dp → G by R360/p → a, E → b. At this point you should have more details proving the
isomorphism directly. But it is an isomorphism.

6 Groups Actions on Sets

Let S be a set.

Definition 6.1. An action of G on S is a homomorphism

T : G→ Sym(S)

where Sym(S) is the group of all permutations of S. This implies

1. T (a) is a permutation of S for all a ∈ G.
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2. T (ab) = T (a) ◦ T (b)

3. T (a−1) = T (a)−1

4. T (e) = id

Example 6.2. G acts on itself by left multiplication: g · x = gx, g ∈ G, x ∈ G. We also
have (ab)x = a(bx) (first act by b, then act by a). This was the main observation in Cayley’s
theorem. It also acts on itself by right multiplication: let g act on x by x → xg−1. The
action of ab is then x→ x(ab)−1 = xb−1a−1 which means first act by b and then act by a. In
some sense, it keeps ab in order.

Example 6.3. G acts on itself by conjugation: g ∈ G acts by x → gxg−1, and ab acts by
x→ (ab)x(ab)−1 = a(bxb−1)a−1, so it first acts by b and then acts by a, again preserving the
order.

Example 6.4. The group Oc of rotations acts on the octahedron.

Remark 6.5. Let G act on S. The notation T (g)(x) is abbreviated g · x or gx. Gallian
defines an action to be only when G ≤ Sym(S). In effect, he requires T to be an injective
homomorphism.

Definition 6.6. Stabilizer.
The stabilizer of an element x ∈ S is stab(x) is the set of all g ∈ G such that gx = x. It is a
subgroup that fixes x.

Example 6.7. If G = Oc, the stab of a vertex is cyclic of order 4.

Definition 6.8. The orbit of x ∈ S is

orb(x) = {gx : g ∈ G} = G · x

Example 6.9. The orbit of a vertex of the octahedron under Oc is the set of 6 vertices.
Note 6 · 4 = 24.

Example 6.10. The face center of the octahedron form an orbit of 8 elements; the stabilizer
of each face center is cyclic of order 3. Note 8 · 3 = 24.

Example 6.11. The body center of the octahedron forms an orbit of order 1 point by itself.
Take stab = Oc: 1 · 24 = 24.

Example 6.12. Let G act on itself by conjugation: T (g)(x) = gxg−1 where g ∈ G, xG.
Then we have T (g) : X → gxg−1. For this action, the orbit of x is the conjugacy class of x.
The stabilizer is the centralizer C(x) = {g ∈ G : gx = xg} (commute with x).

Definition 6.13. An action is transitive if it consists of only one orbit. G can carry every
x ∈ S to every y ∈ S.

Example 6.14. Oc acting on octahedron is not transitive. First we see that 6 vertices form
one orbit and 12 edge-midpoints form another orbit. In fact there are uncountably many
orbits.
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Example 6.15. Oc does act transitively on the 6 vertices of the octahedron.

Remark 6.16. Note that the orbits form a partition of S. (Say x � y iff ∃g ∈ G s.t.
g · x = y). It is also an equivalence relation. You can look at how the group moves things
around and focus on one orbit at a time. This action is transitive.

Theorem 6.17. Let x ∈ S be a fixed starting point. Let H be the stabilizer of x. If G acts
transitively on S, then there is a one-to-one correspondance between G/H and S given by
φ : gH → g · x. Anything you can do with vertices you can do with cosets.

Proof. First, φ is well-defined. If g1H = g2H, we have to show that g1 · x = g2 · x. If
g1H = g2H, then g−12 g1H = H, which means that g−12 g1e ∈ H, which shows that g−12 g1 ∈ H.
But this implies g−12 g1 · x = x. Finally, multiply by g2 on both sides. g2g

−1
2 g1 ·X = g2 ·X →

g1 · x = g2 · x.
Now we have to prove injective and surjective. If g1x = g2x, we must show g1H = g2H.

g1 · x = g2 · x so g−12 g1 · x = x, which means that g−12 g1 does not move x, thus it is in H.
Therefore, g1 ∈ g2H. Since cosets form a partition, we have that g1H ∩ g2H 6= ∅ at the
element g1, we must have g1H = g2H.

For surjectivity, take any y ∈ S. Since the action is transitive, ∃g ∈ G s.t. g · x = y.
Then φ : gH → y.

Example 6.18. How to classify all transitive actions of S3? For instance, take any set of 5
points - can we get S3 to carry every point to every point? Perhaps we can take two actions
and they could be different?

You can classify all subgroups H ⊆ S3, and secondly, for each H, understand the action
on G/H.

Let’s look at all subgroups of S3:

Table 1: Subgroups of S3

order of |H| H
6 S3

3 〈(123)〉 = {e, (123), (132)}
2 〈(12)〉; 〈(13)〉; 〈(23)〉
1 {e}

Conjugation carries each subgroup of order 2 to each other subgroup. They’re isomorphic,
not equal.

Note that H = stab(x) for some initial point x. Also let · be the action on one point.
The corresponding transitive actions are

For 〈(12)〉, Cayley’s Theorem gives that the action on 6 points must be on G/{e} = G =
S3). Act on G by left multiplication, which is transitive because g ·g1 = g2 for a g that carries
g1 to g2, namely g = g2g

−1
1 .

In fact we are doing a form of representation theory. Usually we do linear representation
and we get matrices and we do things with characters and the matrices act on a vector
space. Then you get a finite list of irreducible representations. Actions can also be called
permutation representations, but are not linear since they are acting on sets of points and
not vector spaces.
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Table 2: Transitive Actions of S3

H action
S3 ·
〈(123)〉 H = A3. Action if a even, don’t move the 2 points; if g odd, flip them.
〈(12)〉 the standard action on S3 that defines S3 where x = 1
{e} left multiplication on G

Theorem 6.19. Orbit-stabilizer Theorem.
Let G act on S. Let x ∈ S. Then |G| = |orb(x)| · |stab(x)|.

Proof. Restrict the action to just the orbit of x. Then G acts transitively. Last theorem said
that orb(x) was a one-to-one correspondance with G/stab(x). Let H = stab(x). Lagrange’s
theorem said |G| = |H| · |G/H| (recall |G/H| = [G : H]). This equals |stab(x)| · |orb(x)|.

6.1 Convex Polyhedra

For our purposes, a convex polyhedron (or convex polytope) is an intersection of closed half-
spaces in Rn so the result is bounded and of full dimension n. An Rn−1 is a wall separating
2 halves of Rn, and an Rn−2 is what you chain your dog to in Rn.

Definition 6.20. Codimension is n− k, where k is the dimension of your object.

Definition 6.21. Every convex polytope P has a dual P ∗ with the following properties.

1. vertices of P correspond in a one-to-one way with n− 1-dimensional faces of P ∗.

2. edges of P correspond in a one-to-one way with n− 2-dimensional faces of P ∗.

3. i-dimensional faces of P corerspond in a one-to-one way with n − i dimensional faces
of P ∗.

Whenever two faces meet here, the corresponding faces meet here.

Example 6.22. The dual of the octahedron in R3 is the cube. We have duality of vertices
of the cube to faces of octahedron, and edges of cube to edges of octahedron.

Example 6.23. The dual of the tetrahedron is self-dual.

Example 6.24. The icosahedron and dodecahedron are dual.

In general, P ∗ cannot be inscribed in P . Instead, P ∗ is defined as follows: Move P so
that the origin is in its interior; each closed half-space of P is defined by a normal vector vi
and a distance ri. Let the point-vectors be defined as pj. To create P ∗, go to a separate copy
of Rn and put in the closed half spaces p⊥j and the points 1

ri
vi. You can also define this by

the convex hull of the points.
The platonic solids are special; their dual polytopes can be inscribed in each other and

in fact are closed under the dual operation. Note that this gives you that the automorphism
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groups of the platonic solids are therefore the same since Rot(cube) =Rot(Oc) ∼= S4. We also
have Rot(tetrahedron) ∼= A4.

To summarize, Rot(tetrahedron) ∼= A4, Rot(octahedron) = Oc ∼= S4, Rot(cube) = Oc
since the cube is dual to the octrahedron.

Lemma 6.25. An is generated by 3-cycles (which are even permutations: Every even per-
mutation is some product of three cycles).

Proof. Let g be any element of An. Write g in disjoint cycle notation. First, any k-cycle with
k ≥ 3 is a product of 3 cycles, and one transposition if the cycle is odd.

Example 6.26. (abcdef) = (abc)(cdef) = (abc)(cde)(ef)

Now suppose g is a product of 3-cycles and 2-cycles in some order. Then (...)(...)(..)(...)(...)(...)(..).
We want to move the extra transposition to the right of the three cycle by conjugation. That is
to say, if we have (ab)(cde), not distinct values, we can say that this equals (ab)(cde)(ab)−1(ab).
When you conjugate a 3-cycle, you get a 3-cycle. Thus, (ab)(cde) = (...)(ab). Eventually,
we will have (...)(...)(...)(..)(..)(..)(..) where we have several 3 cycles and an even number of
two-cycles. Finally, any (..)(..) can be made from 3-cycles. In case one, we have (ab)(ab) = e
which is 0 three-cycles. Then when there is one element shared (ab)(ac), with a, b, c dis-
tinct, we have (ab)(ac) = (ba)(ac) = (bac). Finally, we have (ab)(cd) all distinct. Just do
(ab)(cd) = (abc)(bcd) and we get two three cycles.

Theorem 6.27. Rot(icosahedron) ∼= A5.

Proof. Basically you have 5 different tetrahedrons at the face centers at the top of the icosa-
hedron. However, all of the tetrahedra will reflect each other: This gives us chirality. The
rotations carry the five tetrahedra to others. Thus they permute the five tetrahedra, thus
Rot(icosahedron) ⊆ S5. Now we need to say that these permutations are only even permu-
tations. Let’s count how many there are: There are 20 faces; you can rotate around each
face 3 times, this gives a total of 20 · 3 = 60 = 5!/5 which is the order of A5. How do we
know there is not some other subgroup of order 60 in S5? It now suffices to show that every
3-cycle is in the rotation group. Pick a random position and consider a 3-cycle of it. Then
there are 10 pairs of colors, and thus 30 edges in all. Thus all the 3-cycles are in the group,
and these generate A5 which has size 60, so we are done.

Corollary 6.28. Rot(dodecahedron) ∼= A5. Iscosahedron and dodecahedron are dual.

Definition 6.29. Truncation of a polytope.
Cut off a small neighborhood of a vertex with a plane. If you do this in general, the rotation
group gets smaller. If you only chop one vertex, you totally trash the rotation group! If
you do the same thing to all of them, you don’t get the same symmetries in general. For a
Platonic solid, you can truncate so the new cut-face is symmetrical. Also, you can cut every
vertex equally symmetrically and to the same depth. In that case, the rotation group does
not change.

Definition 6.30. The cuboctahedron is where you truncate an octahedron or cube as deeply
as possible (while remaining convex).

Claim 6.31. The soccer ball is what you get if you truncate an icosahedron halfway at each
vertex. Since the icosahedron has 20 faces, you will get 20 hexagons on a soccer ball. Therefore
Rot(soccer ball) ∼= A5.
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7 Direct Products

Definition 7.1. The external direct product of groups G1, · · · , Gn is denoted G1 × G2 ×
· · · × Gn is the group with elements (g1, · · · , gn). Multiplying is defined term by term:
(g1, · · · , gn) · (h1, · · · , hn) = (g1h1, · · · , gnhn).

Claim 7.2. This is a group and (g1, g2, · · · , gn)−1 = (g−11 , g−12 , · · · , g−1n ). Identity is (eG1 , · · · , eGn).
We also note that |(g1, g2, · · · , gn)| = lcm(|g1|, · · · , |gn|).

We use the same definition for rings: R1 × R2 × · · · × Rn with + and · term-by-term.
One school of thought says we should say

⊕
is used for finitely many terms and

∏
for

∞-products.
⊕

also tends to denote abelian.

Theorem 7.3. Chinese Remainder Theorem.
If m,n relatively prime, there is an isomorphism of rings Zmn →∼= Zm

⊕
Zn given by x

mod (mn)→ (x mod m,x mod n).

Corollary 7.4. On additive groups, if m,n relatively prime, then Zmn ∼= Zm
⊕

Zn.

Example 7.5. Z2

⊕
Z3 is cyclic of order 6, generated by (1, 1). We have (0, 0) = (6, 6),

(1, 1), (0, 2) = (2, 2), (3, 3) = (1, 0), (4, 4) = (0, 1), (5, 5) = (1, 2). If they were not relatively
prime, they would coincide with each other earlier.

Theorem 7.6. If m,n are not relatively prime, then the additive group Zm
⊕

Zn is not
cyclic.

Proof. Since m,n are not relatively prime, the lcm(m,n) = L < mn.

Lemma 7.7. gcd(m,n)·lcm(m,n) = mn

Proof. For each prime p, say pa is the highest power of p in m. Also say pb is the highest
power of p in n. Then note that the highest power in the gcd is pmin(a,b). In the lcm, the
highest power is pmax(a,b). Thus for each p in the product, papb is the power of p in mn. In
the product, each of these is present since min(a, b) + max(a, b) = a + b, and thus we have
equality.

Now note that s · (x, y) = (sx, sy). Assume that there is an element (x, y) of order
mn. Then m · (x, y) = (mx,my) = (0,my) and n · (x, y) = (nx, 0). Then m|L, n|L, so
L·(x, y) = (0, 0). So (x, y) has order a divisor of L, which is a contradiction since L < mn.

Example 7.8. No element of Z8 × Z2 has order 16.

We now give a list of useful facts.

1. U(p) is cyclic of order p− 1.

2. U(pn) is cyclic of order φ(pn) = pn − pn−1.

3. U(2n) is ∼= Z2 × Z2n−2 for n ≥ 2, and is generated by −1, 5.

4. U(mn) ∼= U(m) × U(n) if m,n relatively prime (This is just the Chinese Remainder
Theorem). For instance, U(72) = U(8)

⊕
U(9) = Z2

⊕
Z2

⊕
Z6. Each element has

order a divisor of 6.
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Remark 7.9. On Primitive Roots.

Definition 7.10. A primitive root a mod p generates U(p).

We might ask for a fixed a ∈ Z, for which p is a a primite root? McConnell’s undergrad-
uate thesis was about the case a = 2. You have to go to class field theory to get any answer,
and there is no closed form. However, it is true that about 37% (Artin’s constant) of p have
a = 2 as a primitive root. This is also related to the generalized Riemannn Hypothesis.

8 Normal Subgroups

Let H ⊆ G. When do the left cosets of H form a group in their own right? Given g1, g2 ∈ G,
we want a g3 depending on g1, g2 so that g1H · g2H = g3H. Well the left hand side contains
g1e · g2e and the right hand side contains g3e. It is natural to let g3 = g1 · g2. That is,
(g1H · g2)H = g1g2H. The difficulty is that g1hg2 for all h ∈ H may be representative of
more than one coset. If they all lie in one coset, it implies g1hg2 ∈ g1g2H for all h ∈ H. Then
multiply on the left to get hg2 ∈ g2H for all h ∈ H. Well, this just means that g−12 hg2 ∈ H
for all h ∈ H. Thus, if multiplying cosets is to give us a group, we have that H must be
closed under conjugation, since g2 was arbitrary.

Definition 8.1. Let H be a subgroup of G. Then H is normal (or self-conjugate) if for
all g ∈ G

g−1Hg ⊆ H

A normal subgroup is a union of conjugacy classes. In the physical rotation setting, a
subgroup which is normal typically has no arbitrariness.

Remark 8.2. We have H E G denotes a normal subgroup.

The idea is that if H E G, then if you list the h ∈ H in a certain sequence, then g−1hg
runs through H also, but in a different order.

Theorem 8.3. If H ⊆ G then H is normal iff Hg = gH for all g ∈ G.

Proof. To show Hg ⊆ gH, pick x ∈ Hg. That is ∃h1 ∈ H with x = h1g. Then x =
g(g−1h1g) = gh2 for some h2 ∈ H ∈ gH because of normality. Similarly gH ⊆ Hg. Thus
Hg = gH for all g ∈ G, and we have g−1Hg = g−1gH = H is normal.

Example 8.4. G = Dn, H = 〈R〉. Then H E G. First we check it is self conjugate. Every
g ∈ G is a product of Rs and Es. R−1RkR = Rk ∈ H. Then E−1RkE = R−k ∈ H. So it is
self-conjugate under every element. Now we check the order. ERk for k = 0, 1, · · · , n − 1.
This is just R−kE for k = 0, 1, · · · , n − 1. If we change this to RlE, then we have l =
0, n − 1, n − 2, · · · , 2, 1. It’s the same coset, just listed differently. Thirdly, check that
Hg = gH. Then He = eH and HE = EH since ERk = R−kE.

Remark 8.5. If H ⊆ 〈R〉 in G = Dn, then H E G. If H is generated by Rk (cyclic of order
n/k) then ERkE = R−k ∈ H.

Example 8.6. An E Sn. If h ∈ An (even), g ∈ Sn (is a product of k transpositions), then
g−1hg = ()()...()(....)()()...(), k transpositions surrounding an even cycle, means there are
even +2k total, which is still even.
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Example 8.7. There is a normal subgroup V E S4 where V = {e, (12)(34), (13)(24), (14)(23)}.
This is the conjugacy class of e unioned with the conjugacy class of shape (..)(..). It is a
special case that for n = 4, V is closed under multiplication (it happens that in S5 that you
produce 3-cycles when multiplying).

Remark 8.8. In linear algebra, if A is the n × n matrix of a linear transformation on a
certain basis B, then recall conjugation in linear algebra: SAS−1 is the matrix on another
basis B̃ and S is the change of basis matrix between B and B̃. So conjugation in linear
algebra is change of basis. Conjugation is thus the generalization of change of basis to any
group!

Claim 8.9. If G is abelian, then every subgroup H is normal.

Proof. Let G be abelian. Then H ⊆ G. For all g ∈ G, for all h ∈ H, ghg−1 = hgg−1 and
thus gHg−1 = H.

Claim 8.10. The center Z(G) is an abelian subgroup of G, and thus Z(G) is normal.

Proof. Let H = Z(G). For any g ∈ G and for all h ∈ H, ghg−1 = hgg−1 = h since h
commutes with everybody (is central), and thus gHg−1 = H.

Theorem 8.11. Let H E G. Then the set G/H of left cosets is a group under the law

g1Hg · g2H = g1g2H

This group G/H is called the quotient group, or some people call it the factor group, or
“G mod H”.

Remark 8.12. The right cosets H \G are the very same group since Hg = gH.

Proof. First we must prove that the law is well-defined. g1h1 · g2h2 = g1(g2g
−1
2 h1)g2h2 =

g1g2(g
−1
2 h1g2)h2 = g1g2h3h2 ∈ g1g2H since h3h2 ∈ H. We need normality to perform this

operation. Then the rest of the proof is routine: eH = H is the identity, (gH)−1 = g−1H.

Example 8.13. G = Dn, H = 〈R〉 which is cylic of order n. Then G/H ∼= Z2. Elements of
G/H are H,E ·H where E is a reflection. The group law is EH · EH = E2H = eH.

Example 8.14. Let G = D4, H = Z(G) = 〈R2〉 = 〈R180〉. Then H E G. We claim
H/G ∼= D2 is the dihedral group of the digon, the two-sided polygon. Modding out by R2 is
just identifying opposite points in the square with each other. Then D2

∼= Z2 ⊕ Z2.

Example 8.15. S4/V ∼= S3. Recall S4 is order 24, V is order 4 and S3 is order 6.
V acts transitively on the set {1, 2, 3, 4}. In fact, the action is uniquely transitive: for

all a, b ∈ {1, 2, 3, 4} there is a unique element of V carrying a to b, namely (ab)(cd) if a 6= b,
or e if a = b. Let g ∈ S4 be arbitrary. Say g : 4 → a. There does not exist h ∈ V carrying
4 → a. Then gh fixes 4. So gh ∈ Sym({1, 2, 3}) = S3. Then if we map S4/V →∼= S3 by
the following: in the coset gV , choose the unique element g1 = gh with g2 ∈ S3; write g1V
instead of gV .

19



Example 8.16. G = (Z,+, 0). Any subgroup of G is normal since G is abelian. Any H ⊆ G
is H = 〈n〉 for some n ∈ Z. Then Z/nZ is the rigorous meaning of Z mod n. Then 1 + 3Z
is the coset which is the set of integers ∼= 1 mod 3.

In general, a + nZ = b + nZ iff nZ = (b − a) + nZ iff b − a ∈ nZ iff n|(b − a) iff a ≡ b
mod n.

The idea is that G/H is a group related to G but with simpler structure. You’re effectively
connecting together some things which were not connected together before. Thus you are
removing some complexity of the group. You can often draw conclusions about G from
knowing H and G/H.

Example 8.17. H and G/H do not determine G even in order 4, the first non-prime order.
Let G1 = Z/4Z, H = 2Z/4Z. Then G1/H = Z/2Z. Therefore, both H and G1/H are cyclic
of order 2, which is isomorphic to Z2. Then in the other case, let G2 = 〈a, b〉 where a, b are
of order 2 and commute. G2 = {e, a, b, ab}, and H = 〈b〉. Then H = {e, f}, aH = {a, ab},
and G2/H has order 2, generated by a mod H. Again, H,G2/H are both ∼= Z2. However,
G1 6∼= G2, despite H and G2/H being equivalent to H and G1/H.

Recall that Z(G), the center of G, is a normal subgroup of G.

Theorem 8.18. If G/Z(G) is cyclic, then G is abelian.

Proof. Recall that if G is abelian only when G = Z(G). Therefore, we will show that G/Z(G)
has only one element. Let us consider the elements ofG/Z(G): eZ(G), xZ(G), x2Z(G), · · · , xn−1Z(G).
Then note that all these elements commute since G/Z(G) is cyclic, and thus by the pullback
map of the homomorphism G→ G/Z(G), we must have that these elements commuted with
each other. Since each of these elements already commutes with all of Z(G) by definition,
we must have that all elements of G commute and therefore G is abelian.

Therefore we also see that if G/Z(G) is cyclic, it must be trivial.
We note that the contrapositive statement is most useful:

Theorem 8.19. If G is not abelian, then G/Z(G) is not cyclic.

We also have

Theorem 8.20. G/Z(G) ∼= Inn(G).

8.1 Class Equation

Recall that the conjugacy classes in G are a partition of G. Now let G be finite and let its
conjugacy classes have representatives x1, · · · , xk. Thus, G = {gx1g−1|g ∈ G} t {gx1g−1|g ∈
G}t · · · t {gxkg−1|g ∈ G}. If you’ve used up all elements of G, then you’re done. Otherwise
keep going. Then |G| = |C1| + · · · + |Ck|. Ci is the orbit of xi under the action of G by

conjugation. Then |Ci| = |G|
|stab(xi)| . The stabilizer of xi is the centralizer C(xi) = {g ∈ G :

gxi = xig}. Then the class equation is given by

|G| =
k∑
i=1

|G|
|C(xi)|

(2)

20



Definition 8.21. A p-group is a group of finite order pn for p prime.

Then the application of the class equation to p-groups gives that

Theorem 8.22. A non-trivial p-group has non-trivial center.

Proof. We have |G| = pn, n ≥ 1. In particular, |G| ≡ 0 mod p. In any group {e} is a
conjugacy class by itself: geg−1 = gg−1 = e. Note that |C(xi)| is a power of p for all i ∈ [k]
by Lagrange’s Theorem. Therefore, |G|/|C(xi)| is also a power of p for all i. Powers of pn

mod p are 0 unless the power pn = 1. The class equation says that 0 ≡ 1+?+· · ·+?, where all
the question marks are either 1 or 0 mod p. At least p of the entries must be ones, otherwise
there is no way we can get 0 from the sum of 1s. If xi generates a conjugacy class of order
1, then gxig

−1 = xi for all g, and gxi = xig, which means xi ∈ Z(G). Thus since there are
at least p of these such that |〈xi〉| = 1 as we said before, we must have |Z(G)| ≥ p.

To understand that a p-group G, let G1 = G/Z(G), strictly smaller than G. G1 is a
p-group, so G2 = G1/Z(G1), which is smaller than G1. Since G was finite, this process stops
after some number of steps j where Gj = {e}. Then you try to reconstruct Gj−1, Gj−2, Gj−3,
and so on.

Theorem 8.23. (Cauchy).
If G is a finite abelian group and p||G|, p prime, then G has an element of order p.

Proof. Since G is abelian, all its subgroups are normal. Taking any x ∈ G, x 6= e. Say
|x| = n, n||G|. Let q be some prime factor of n. Then xn/q has order q in G. If q = p, we

are done, so suppose that q 6= p. Let w = xn/q and H = 〈w〉 of order q. G/H has order |G|
q

,

which is smaller than |G| and is divisible by p. Then we proceed by strong induction on the
size of Gi. Take for granted that G1 = G/H has an element y of order p, that is, coset yH
has order p. Therefore yp ∈ H, yp = wk for k = 0, · · · , q − 1. If k = 0, then y really does
have order p in G. If k 6= 0, then wk has order q in G. Then ypq = wkq = e. Then, yq must
have order p since pq does not factor any more.

8.2 Internal Direct Products

We have defined the internal direct product G = G1 × G2 to be G = {(g1, g2)|g1 ∈ G1, g2 ∈
G2}. Identify G1 with {(g1, e)|g1 ∈ G1}. Informally, G1

∼= G1 × {e}. Identify G2 with
{(e, g2)|g2 ∈ G2}, G2

∼= e × G2. Once you do this, note G1 E G since (x, y)(g1, e)(x, y)−1 =
(xg1x

−1, yey−1) = (xg1x
−1, e). Similarly Gw E G. Then, G = G1G2 = {(g1, e) · (e, g2)|g1 ∈

G1, g2 ∈ G2} = {(g1,g 2)}. Finally, G1 ∩G2 = {(e, e)}.

Definition 8.24. If G has subgroups H,K with

1. H E G

2. K E G

3. G = HK

4. H ∩K = {e}
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Then we say H,K give G the structure of internal direct product.
In general, the condition is a bit more complicated:

Definition 8.25. If G has subgroups H1, H2, · · · , Hn all normal, then if

1. G = H1H2 · · ·Hn

2. (H1 · · ·Hj) ∩Hj+1 = {e} for all j = 1, · · · , n− 1.∏n
i=1Hi is an interal direct product representation of G and is isomorphic to H1 × · · · ×Hn.

Theorem 8.26. If you have an internal direct product, G ∼= H ×K. The map is for g ∈ G,
g = hk for some h ∈ H, k ∈ K; φ(hk) = (h, k) is an isomorphism.

Proof. Well-defined: If g = hk and g = h1k1, we must show h = h1 and k = k1. This
is because hk = h1k1. Then, φ is a homomorphism: g1 = h1k1, g2 = h2k2. φ(g1g2) =
φ(h1k1h2k2) = φ(h1k1h2k

−1
1 k1k2) = φ(h1h3k1k2) where h3 = k1h2k

−1
1 ∈ H since H is normal.

Thus, this equals (h1h3, k1k2) and we have φ(g1) · φ(g2) = (h1, k1) · (h2, k2) = (h1h2, k1k2).
We need to show h3 = h2.

Then we have some immediate results which follow:

Theorem 8.27. Groups of Order p2.
Let p be prime. A group of order p2 is isomorphic to either Zp2 or Zp ⊕ Zp. Thus, in all
cases, groups of order p2 are abelian.

9 Homomorphisms and the Isomorphism Theorems

Recall that a homomorphism is a map between two groups which preserves the algebraic
operations. First, we give an important definition:

Definition 9.1. The kernel of a homomorphism φ : G→ G′ is defined as

Ker(φ) = {x : φ(x) = e, x ∈ G}

It is analagous to the nullspace from linear algebra.

We now note some important properties of homomorphisms and the kernel.

1. Ker(φ) is a normal subgroup of G.

2. φ(a) = φ(b) iff aKer(φ) = bKer(φ).

3. The inverse map φ−1 from g′ ∈ G is the kernel gKer(φ), where φ(g) = g′.

Now we come to the isomorphism theorems. φ : G→ G′ denotes an isomorphism.

Theorem 9.2. First Isomorphism Theorem.
The map ψ : G/Ker(φ)→ φ(G), given by

ψ(gKer(φ)) = φ(g)

is an isomorphism. Thus gKer(φ) ∼= φ(g). This mapping is considered natural, and one can
draw an appropriate commutative diagram.
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Proof. Note that since the kernel is a normal subgroup, we can quotient by it and thus the
elements of G/Ker(φ) can be written g1Ker(φ), · · · , gnKer(φ). Then the map is by definition
one-to-one, since each giKer(φ) is mapped to φ(gi), which are necessarily unique since φ(a) =
φ(b) iff aKer(φ) = bKer(φ). We now show that ψ preserves algebraic operations:

ψ(g1Ker(φ) · g2Ker(φ)) = ψ (g1g2Ker(φ))

= φ(g1g2) = φ(g1)φ(g2)

= ψ(g1Ker(φ)) · ψ(g2Ker(φ))

(3)

Corollary 9.3. Note this implies that |φ(G)| divides both |G| and |G′|. This is because φ(G)
is isomorphic to g1Ker(φ), · · · , gnKer(φ), which are all distinct since the kernel is normal.
Thus |φ(G)| = |G|/|Ker(φ)|. Then, φ(G) must be a subgroup of G′ and therefore its order
must divide |G′|.

Theorem 9.4. Normal subgroups correspond to kernels. In particular, the normal subgroup
N of G corresponds to the kernel g → gN from G→ G/N .

Another corollary is useful for analyzing automorphisms.

Corollary 9.5. Let N(H) be the normalizer {x ∈ G : xHx−1 = H} and C(H) be the
centralizer {x ∈ G : xh = hx∀h ∈ H}. Then consider the map ψ : N(H) → Inn(H) ≤
Aut(H)

ψ(g) = φg

where φg(x) = gxg−1 is an inner automorphism. Then, ψ is a homomorphism with kernel
C(H) since for any g s.t. ψ(g) = φe, we must have g commutes with all x ∈ H, i.e., the
centralizer of H. Therefore,

N(H)/C(H) ∼= ψ(N(H)) ≤ Inn(H) ≤ Aut(H)

We now state the second and third isomorphism theorems.

Theorem 9.6. Second Isomorphism Theorem.
If K is a subgroup of G and N is a normal subgroup of G, then

K/(K ∩N) ∼= KN/N

Theorem 9.7. Third Isomorphism Theorem.
If M and N are normal subgroups of G and N ≤M , then

(G/N)/(M/N) ∼= G/M

10 Classification of Finite Abelian Groups

Theorem 10.1. Let G be a finite abelian group. Then G ∼= Zd1⊕Zd2⊕· · ·⊕Zdk , with di ∈ N
and d1|d2, d2|d3, · · · , dk−1|dk. Furthermore, the di are uniquely determined by G. They are
called the “elementary divisors”.
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Example 10.2. Classify the abelian groups of order 8. How can you write 8 as an ascending
product of powers of 2? Well, you could take 8. The next power of 2 is 4: so 2 ∗ 4. Then the
last thing we can do is 2 ∗ 2 ∗ 2. These are the only ways to make 8 as an ascending product,
so the abelian groups of order 8 correspond to these: Z8,Z2 ⊕ Z4,Z2 ⊕ Z2 ⊕ Z2.

Definition 10.3. A number-theoretic partition of n ∈ N is an expression a1+a2+· · ·+ak = n,
where a1 ≤ a2 ≤ · · · ≤ ak.

Definition 10.4. The number of number-theoretic partitions of n is π(n).

Corollary 10.5. The number of abelian groups of order kn, up to isomorphism, is π(n).

To find all abelian groups of order n = pn1
1 p

n2
2 · · · pnm

m , combine the partitions for each pni
i .

Example 10.6. Find all abelian groups of order 360.
Well, 360 = 23 ∗ 32 ∗ 5. The only partitions of 23 are 8, (2, 4), (2, 2, 2). The only partitions of
32 are 9, (3, 3). Finally, the only partition of 5 is 5. Therefore, there are 3 ∗ 2 ∗ 1 = 6 abelian
groups of order 360:

Z8 ⊕ Z9 ⊕ Z5
∼= Z360,

Z3 ⊕ (Z3 ⊕ Z5 ⊕ Z8) ∼= Z3 ⊕ Z120,

Z2 ⊕ (Z4 ⊕ Z9 ⊕ Z5) ∼= Z2 ⊕ Z180,

(Z2 ⊕ Z3)⊕ (Z4 ⊕ Z3 ⊕ Z5) ∼= Z6 ⊕ Z60,

Z2 ⊕ Z2 ⊕ (Z2 ⊕ Z9 ⊕ Z5) ∼= Z2 ⊕ Z2 ⊕ Z90,

Z2 ⊕ (Z2 ⊕ Z3)⊕ (Z2 ⊕ Z3 ⊕ Z5) ∼= Z2 ⊕ Z6 ⊕ Z30

(4)

Since G is finite, it is finitely generated: G = 〈g1, · · · , gm〉. Since G is abelian, there is a
(surjective) homomorphism φ : Zm → G, which is just (a1, · · · , am) → ga11 · · · gamm . This is a
homomorphism only because G is abelian: Use the fact that (g1g2)

k = gk1g
k
2 . Otherwise the

algebraic properties are not preserved.
Now we have a major theorem in algebraic geometry and algebraic topology when it is

generalized:

Theorem 10.7. With the above notation, Ker(φ) is also finitely generated.

Proof. Let N ≤ Zm be generated by (|g1|, 0, · · · , 0), (0, |g2|, 0, · · · , 0), · · · , (0, · · · , 0, |gm|).
Then N ⊆ Ker(φ) because g

|g1|
1 g02 · · · g0m = eee · · · e = e. Mod N , every element of Zm

has a representative in the finite set (a1, · · · , am) where 0 ≤ a1|g1|, 0 ≤ a2 ≤ |g2|, · · · , 0 ≤
am ≤ |gm|. Thus the order of (a1, · · · , am) is ≤ |g1| · · · |gm|. Let K be the subset of Ker(φ)
satisfying the previous given condition. ThenK is finite and has cardinality≤

∏m
i=1 |gi|. Then

Ker(φ) = 〈K,N〉. Therefore, the kernel is finitely generated since the kernel is generated by
two things which are finitely generated.

Now we turn the group classification into a matrix problem. Write the elements of N ∪K
as columns of an m × n matrix A. Then ψ is a map from Zn → Zm, and φ is a surjective
map from Zm → G and Ker(φ) =image(ψ).
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Example 10.8. A group G is generated by g1, g2 where g1 has order 2, g2 has order 4, and
g1g

2
2 = e. What is G? Well g1 = g−22 and g1 = g22, so g1 is not necessary as a generator: the

whole group is generated by g2. Since g2 is of order 4, G = 〈g2〉 ∼= Z4. But how do we do
this in general?

Theorem 10.9. Smith Normal Form (SNF). Let A be an m × n matrix over Z. Then we
can write

A = PDQ (5)

where P is m×m, det(P ) = ±1, and both P and P−1 have entries in Z (P ∈ GLm(Z)). Q
is n×n, det(Q) = ±1, Q, Q−1 both have Z entries, D is m×n, is all 0s except on diagonal,
where it has the values d11, d22, · · · , dii ∈ Z, dii > 0 and d11|d22, d22|d33, · · · , d(k−1)(k−1)|dkk.
k ≤ minm,n, if k is less, then d(k+1)(k+1) and onwards = 0.

Remark 10.10. We will construct P,Q as a product of 3 kinds of elementary matrices.
Each elementary matrix has entries in Z and so does its inverse. The elementary matrices
are permutation matrices, row switch matrices, and unit (±1) scaling (diletation) matrices
(i.e. the matrices used for Gaussian elimination).

10.1 SNF: The Algorithm

The input is A,m × n. Initialize P = Im, D = A,Q = In. We’ll overwrite (not in Haskell)
P,D,Q as we go along, preserving the invariant that A = PDQ. Whenever we do a step to
P , we will do a step to D so that the product will be the same. For instance, we will be

applying row operations Ri. We also allow multiplication by a matrix
[
1 0 0
0 −1 0
0 0 1

]
for multiplying

negative numbers. Then, if we modify D → R1DR2 (multiplying on the left corresponds to
rows and on the right corresponds to columns), then PDQ = (PR−11 )(R1DR2)(R

−1
2 Q) and

P ′ = PR−11 , Q′ = R−12 Q.

1. Let c = 1, the active region is the (c, c) entry to the (m,n) entry (presume by induction
that we have done everything from d11, · · · , d(c−1)(c−1) entries, and everything outside
of this block is 0 already as desired) (c stands for “corner”, in this case, upper left
corner).

2. Look for the smallest entry in non-negative absolute value, permute rows/columns so
that it goes to the dcc position (the pivot).

3. Now, you basically do the Euclidean algorithm. Subtract multiples of row c off of
the rows below to make column c into the Euclidean remainders mod dcc. If all the
remainders are 0, continue. If not, put the smallest remainder into dcc (the absolute
value is not zero) by a permutation, and redo this step again until all remainders are
0 (like the Euclidean algorithm). If every a value is negative, multiply by a scaling
matrix so that the value is not negative.

4. Do the same thing as in step 3 except for the columns.
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5. Now, we have dcc in position (c, c) still and everything to the left and below in the same
row and column as dcc are all 0. We still have the remaining block. If dcc has non-zero
remainder when divided into by any aij in the remaining block, add row j to row c and
go back to step 4. Keep doing this until all the remaining values are divisible by dcc.

6. At this point, every remaining entry aij is a multiple of dcc. Every Z-linear operation
on the remaining block will preserve this property. The next pivot that the region spits
out will be divisible by dcc necessarily, so now we can just increment c and return to
step 2. We stop once the remaining block in step 6 is all 0. You will certainly stop
since the matrix is finite.

Proof. Let A = PDQ map from Zn → Zm, and Zm → G is a surjective map. P is an
isomorphism from Zm → Zm since P, P−1 are over Z, and the same is true for Q over Zn.
WLOG change coordinates by P in Zm and by Q in Zn. Then we basically have D as a
map from Zn → Zm, which by our algorithm retains the property that dii|d(i+1)(i+1). So
G ∼= Zd11 ⊕ Zd22 ⊕ · · · ⊕ Zdkk by the way we are doing matrix multiplication by D.

We could have also proved the result this way:

Theorem 10.11. Primary Decomposition.
A finite abelian group G is a ⊕ of cyclic groups of prime power orders.

Example 10.12. Z6 ⊕ Z60
∼= Z2 ⊕ Z4 ⊕ Z3 ⊕ Z3 ⊕ Z5 by the Chinese Remainder Theorem.

The uniqueness of Smith Normal Form, by some more ring theory and determinants, you
can get. For the Primary Decomposition, you get uniqueness (see Gallian’s book) in Ch 11
Lemma 4.

Corollary 10.13. Converse of Lagrange’s Theorem.
If m divides the order of a finite Abelian group, then there exists a subgroup of order m.

11 Representation Theory

One book that we will follow, since it is a classic, is Linear Representations of Finite Groups,
by J.P. Serre.

We have been rotating shapes in vector spaces since the first day of class. Then, given
any group and any vector space, how many ways are there to make the group act on it? It
has to fit in the dimension of the space. Are there infinitely dimensional ways (what is their
dimensional equivalent), are there finitely many ways, how can we classify them?

It is traditional to start over algebraically closed fields. Recall that C is an algebraically
closed field, that is, any polynomial over C of degree n has n roots, counting multiplicities.
The reason we want to begin over algebraically closed field is because we want the eigenvalues
of the matrices (linear transformations) if the eigenvalues exist so we can diagonalize and so
on (these are found by roots of characteristic polynomials).

Let V be a finite dimensional vector space over C.

Definition 11.1. GL(V ) is the group of invertible linear transformations from V → V . We
can fix a basis {e1, · · · , en} of V . Then linear transformations and matrices are effectively
the same thing; we can define a one-to-one map. Thus, we can say that GL(V ) = GLn(C),
the n× n invertible matrices.
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Definition 11.2. Let G be a finite group. A linear representation of G on V (or in V ) is a
homomorphism of groups

ρ : G→ GL(V ) (6)

Example 11.3. ρ(e) = In, ρ(g) = ρ(g)−1, etc.

If n = dim(V ), say ρ has dimension n, or ρ has degree n (interchangeable). Now we have
a vector space and a group acting on it. Let’s think about all the other things we can do with
vector spaces, and see if we can extend the property of the group acting on it. We can call
V a G-space, since G is acting on it. What’s the right definition of how to extend a linear
map in G?

Definition 11.4. Let ρ : G→ GL(V ) and ρ′ : G→ GL(V ′), where G is the same group and
we have different vector spaces (for today). ρ will denote a linear representation. A map of
representations, or a G-map, or an intertwining operator (all equivalent), is a linear
map τ : V → V ′ such that τ ◦ ρ(g) = ρ′(g) ◦ τ for all g ∈ G.

The way to understand it is as follows: V →ρ(g) V , and V ′ →ρ′(g) V ′. Then we have
arrows from V →τ V ′, and we have a square. This is called a commutative diagram. You
have to get the same result regardless of which of the two paths you take. You can get really
large commutative diagrams in algebraic topology. However, all we will need is squares.

Definition 11.5. ρ, ρ′ are isomorphic (or similar, equivalent) as representations if there is a
G-map τ : V → V ′ that is an isomorphism of vector spaces. For such τ , τ−1 is also a G-map.

Now let us give some examples of representations.

Example 11.6. The trivial representation is send ρ : G → GL1(C), where ρ(g) = 1 for
all g. This does not do anything.

Example 11.7. If ρ is any degree−1 representation, then ρ : G → GL1(C) = C∗, which
means take the punctured complex plane (C− {0}). Let G be cyclic of order d. Let g be a
generator of G. Then ρ(e) = ρ(g0) = 1 ∈ C∗. Therefore, 1 = ρ(gd) = ρ(g)d. Thus, ρ(g) is a
dth root of unity. By de Moivre’s Theorem, the dth roots of unity in C∗ are the d numbers
e2πik/d for k = 0, · · · , d−1. So we have pretty much classified the representations of the cyclic
group, since ρ must send the generator g to one of those roots of unity. Explicitly, choose
any ζ from the dth roots of unity; get a representation ρζ : 〈g〉 → C∗, g → ζ. In general,
gk → ζk, for all k = 0, · · · , d− 1.

Lemma 11.8. All d of the ρζ are inequivalent.

Proof. Assume ρζ ∼= ρζ′ , and assume the isomorphism is called τ . Then ρζ(g
0) = 1, ρζ′(g

0) =
1. The commutative square had to be valid for the same τ and all g. So τ : 1 → 1 and
τ is multiplied by a scalar, since we are dealing with one-dimensional vector spaces. So τ
is the identity, since the only scale you can multiply 1 by to get 1 is 1. So ρζ(g) = ζ, and
ρζ′(g) = ζ ′, so τ(ζ) = ζ ′, and they were equal after all.

Definition 11.9. The d dth roots of unity are a subgroup of C∗ of cyclic order d. You
can also show that ρs are themselves an abelian group under multiplication, and you get
ρζ ∗ ρζ′ = ρζζ′ . This group is called the dual of G, Ĝ. G, Ĝ are both cyclic of order d, and
you can make a table that makes them look like the same group!
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Table 3: G ∼= Ĝ

g0 = e ρ1 (trivial representation)

g ρw (let w = e2πi/d)
g2 ρw2

...
...

gd−1 ρwd−1

However, the isomorphism G ∼= Ĝ is not canonical: This means that the isomorphism
depends on the particular generators g, w. The correspondance is really a dual-pairing, not
directly an isomorphism. ρωl(gk) = ωkl. Say for example d = p, an odd prime. Replace g
by another generator h = g2. The natural way to keep the pairing the same is compute 2−1

mod p and let ψ = ω2−1
. Then ρψl(hk) = ω(2k)(2−1l) = ωkl, since hk = g2k, ψl = ω2−1l. Since

we have to have this ψ, which can get complicated, this is not “simple” and therefore not
canonical.

The standard example which will work on the next problem set is as follows: Although

G ∼= Ĝ is non-canonical, you can take the dual of the dual Ĝ ∼= ˆ̂
G and get a canonical

isomorphism from G ∼= ˆ̂
G.

We can relate the idea of the dual back to linear algebra. In linear algebra, the dual
space V ∗ of a vector space V over a field F is the annihilator functionals which applied to
any element of V map it to 0. Similarly, we can consider V ∗∗, the double-dual. Again,
V ∼= V ∗∗ canonically, but V ∼= V ∗ is not canonical. In practical terms, we can think of
the members of V as column vectors, the members of V ∗ as row vectors who have a dot
product of zero with the members of V (orthogonal space), and the members of V ∗∗ as
column vectors again. Thus, the V → V ∗∗ map is canonical because it’s an identity map.
For instance, in the case where V is three-dimensional, (x, y, z)→ (x, y, z)T is not canonical.
Consider that (x, y, z) must act on any subspace of V , for instance denoted by some matrix
A−1. then (x, y, z)A−1A(x, y, z)T = 0, but we must include the A,A−1 in here. Then,
((x, y, z)A−1)T = (A−1)T (x, y, z), which means in our isomorphism we must map by (A−1)T ,
which may not be trivial, and thus the mapping is not canonical.

Example 11.10. If f : G → H is any homomorphism of groups, and ρ : H → GL(V ) is a
representation, then ρ ◦ f is a representation of G on V . This is especially useful if N E G,
G → G/N → GL(V ). For instance, Sn/An is cyclic of order 2, generated by g. There are
two reps of 〈g〉 on degree 1.

Table 4: G ∼= Ĝ

. e g
ρ1 1 1
ρ−1 1 −1

Pulling these back through Sn → Sn/An → {±1} gives the trivial representation of Sn,
and the sign representation, sgn : Sn → {±1} ⊆ C∗ by sgn(even perm)→ 1, sgn(odd perm)→
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−1.
We can also consider G = A4. Recall V = {e, (12)(34), (13)(24), (14)(23)}, which is

isomorphic to the Klein-4 group, and is normal in A4. Here A4/V is cyclic of order 3, and we
will get three representations. The trivial representation, ρω, ρω2 which all map to C∗. How
will we see these as representations of A4. Then, take each face of a tetrahedron, and divide
each face into three section. Color each of these a separate color; black, white and red. Then
ρω is: Pick a face called the front face, act on the tetrahedron by g ∈ A4; if g sent (B W
R) to (B W R), ρw(g) = 1 - nothing changes about the colors. If it’s (B W R) to (B R W),
ρω(g) = ω. If its (B W R) to (R W B), then ρω(g) = ω2.

Example 11.11. Rotations and reflections of bodies in Rn (or Cn) give representations. For
instance, rotations of the tetrahedron are a representation of A4 on R3. Often you can embed
R3 → C3 by sending a real basis vector to the same basis vector (complex values 0) in C3.

Theorem 11.12. Any representation of A4 is a ⊕ (direct sum) of copies of the three degree-1
representations we’ve seen, and the degree-3 representation from the tetrahedron.

Definition 11.13. ρ : G → GL(V ). Let W ⊆ V be a subspace. Say W is stable (or
invariant) under the representation if ρ(g) ·W = W for all g ∈ G.

Definition 11.14. ρ is irreducible if it has no stable subspaces besides V and {0}.

Example 11.15. Let G = A4. Let C4 have basis e1, · · · , e4. Let g ∈ A4 act by ρ(g) : ei → egi
for i = 1, 2, 3, 4. Then, let g = (123) is the following matrix, which acts on columns:

0 0 1 0
1 0 0 0
0 1 0 0
0 0 0 1


which is a permutation representation. The vector [1111]T is stable: ρ(g) · {α ∗ [1111]T :
α ∈ C} = {α ∗ [1111]T : α ∈ C} for all g. In other words, the line W = C · [1111]T is stable,
which also works in R4. In R4, in which we have a standard dot product. All ρ(g) matrices
are orthogonal and preserves the standard dot product (this is very clear for permutation
matrices as its columns are orthonormal). The perpendicular complement W⊥ of W must
also be stable. Abstractly speaking, W⊥ ∼= R3. By symmetry, all four axes R · e1, · · · ,R · e4
must orthogonally project to W⊥ and

(
4
2

)
pairs must project to the same angle. Well, this

is literally the tetrahedron: We have four lines which have that all
(
4
2

)
pairs have the same

angles! ≈ 109.... The origin is at the center of the tetrahedron, and the 4 lines are through the
centers of each of the faces. So W⊥ is equivalent to the tetrahedral rotation representation.

11.1 Constructing Representations

Let V be a vector space over C, with basis e1, · · · en and W be a vector space over C with basis
f1, · · · fm. G is a finite group, and ρ : G→ GL(V ) and ρ′ : G→ GL(W ) are representations.

Definition 11.16. Direct Sum.

V ⊕W = {(v, w) : v ∈ V,w ∈ W} (7)
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In terms of representations, we have

(ρ⊕ ρ′)(g) : (v, w)→ (ρ(g) · v, ρ′(g) · w) (8)

We can write this in terms of matrices as[
ρ(g) 0

0 ρ′(g)

]
·
[
v
w

]
11.1.1 Tensor Product

Definition 11.17. The tensor product V ⊗ W is an nm dimensional vector space with
basis ei ⊗ fj. The product must be bilinear: (a1e1 + · · · + anen) ⊗ (b1f1 + · · · + bnfn) =∑

i=1,··· ,n;j=1,··· ,m(aibj)ei⊗fj. In matrix language, we can represent the tensor product of two
vectors in Rn,Rm as a matrix in Rm×n:

a1
a2
...
an

 · [b1 b2 · · · bm
]

=

a1b1 a1b2 · · · a1bm
...

...
...

...
anb1 anb2 · · · anbm


The representations act by

ρ(g) ·


a1
a2
...
an

 · [b1 b2 · · · bm
]
ρ′(g)T

which defines

(ρ⊗ ρ′)(g) : v ⊗ w → (ρ(g)v)⊗ (ρ′(g)w) (9)

11.2 Dual Space

Definition 11.18. V ∗ is the space of linear functions f : V → C. This is a vector space:
f + g is linear, cf is linear. Write coordinates on V as a column vector [a1 · · · an]T ; then, a
linear map is c1a1 + · · ·+ cnan. In other words, coordinates of V ∗ are rows.

We want to define a representation ρ∗ on V ∗ so that the pairings are preserved. If
ρ(g) = A, a matrix, then the representation is A[a1, · · · , an]T . Then, the way to preserve the
mapping (c1, · · · , cn) is to multiply it on the right by A−1. ρ∗ acts on rows by ρ(g)−1 on the
right. This is another illustration of what non-canonical means. If you act on one of them
by A, you have to act by the inverse on the other.

If you want to treat both V and V ∗ as columns, then ρ∗(g) = (ρ(g)−1)
T

. So you need
both the −1 and the transpose to make ρ∗ a homomorphism:

ρ∗(gh) =
(
ρ(gh)−1

)T
=
(
ρ(h)−1ρ(g)−1

)T
= (ρ(g)−1)T (ρ(h)−1)T

(10)
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Then we define Hom(V,W ) which is the space of all linear maps V → W which is
isomorphic to the space of all m× n matrices over C.

Definition 11.19. Hom(V,W ) ∼= V ∗ ⊗W , canonically, where ⊗ is tensor product.

Proof. The ith row of a matrix is an element of V ∗, and (ith row) · [a1, · · · , an]T = ci. For the
other direction, the map sends a1v1 + · · · anvn to c1f1 + c2f2 + · · · + cnfn. For each element
(f1, · · · , fm) of a basis of W , we’ve chosen an element of V ∗:

∑m
i=1(V

∗)i ⊗ fi ∈ V ∗ ⊗W .

Therefore, ρ and ρ′ give a representation on Hom(V,W ) as follows: For φ ∈ Hom(V,W ),
send it to W ←ρ′(g) W ←ρ V ←ρ(g)−1

V . That is, φ→ ρ′(g) ◦ φ ◦ ρ(g)−1.

Definition 11.20. For any representation V of G, V G denotes the invariant subspace of
G, i.e. {v ∈ V : ρ(g) · v = v,∀g ∈ G}. Recall that a G−map, or intertwining operator, is
τ : V → W such that V →ρ(g) V and W →ρ′(g) W , and V →τ W . Then, HomG(V,W ) is the
space of G-maps.

Theorem 11.21. HomG(V,W ) ∼= Hom(V,W )G, canonically.

Proof. Let τ ∈ Hom(V,W ) and let it be invariant under the action of G on Hom(V,W ).
Then, V →ρ(g)−1

V and W →ρ′(g) W , and V →τ W . This is basically the same diagram as
the definition of G-map, since ρ(g) is an isomorphism, we can just switch the direction of the
arrow and change inverse to not an inverse.

11.3 Irreducible Representations

There are two notions of “smallest possible representation”.

1. irreducible: A space W ⊆ V is stable under ρ if ρ(g) ·W ⊆ W for all g ∈ G. V is
irreducible if it has no stable subspaces besides {0} and itself.

2. indecomposable: V is decomposable if V ∼= V1⊕V2 where dim(V1) > 0, dim(V2) > 0.
So, ρ ∼= ρ1 ⊕ ρ2.

In many areas of math, these are not the same notion, and irreducible is finer than
indecomposable.

Example 11.22. G = (R,+, 0) (not finite). Then we have a representation ρ : G→ GL2(R)
and a → [ 1 a0 1 ], which is a horizontal shear. Here, the x-axis is stable for the ρ. No other
subspace is stable! Thus we cannot decompose as V1⊕V2 since there is no stable V2 where V1
is the x-axis. The x-axis is one dimensional and is therefore irreducible (only other subspace
must be the subspace {0}).

Definition 11.23. A group is simple if it has no normal subgroups besides itself and the
trivial subgroup.

Simple groups are like prime numbers, since you can’t quotient it out anymore. Simple
is more like irreducible than decomposable. For instance, Z4 is not decomposable since
Z4 6∼= Z2 ⊕ Z2. However, 0 / 2Z2 / Z4, and thus 2Z2 is irreducible.

Now, recall that
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Definition 11.24. A Hermitian inner product is a pairing V × V → C denoted 〈v|w〉 (as
in quantum mechanics) (a braket). This is linear in v: 〈v1 + v2|w〉 = 〈v1|w〉 + 〈v2|w〉. Also,
〈cv|w〉 = c〈v|w〉. It’s only semilinear in w: 〈v|w1+w2〉 = 〈v|w1〉+〈v|w2〉, but 〈v|cw〉 = c〈v|w〉,
where c is the complex conjugate. Finally, the operation is positive definite: 〈v|v〉 > 0 for all
v ∈ V , v 6= 0.

Example 11.25. If v = [z1 · · · zn]T in coordinates on {ei}, w = [w1, · · · , wn]T . The standard
product is just z1w1 + · · · znwn. This is positive definite since 〈v|v〉 = z1z1 + · · · + znzn =
|z1|2 + · · ·+ |zn|2 > 0 unless all zi = 0.

Theorem 11.26. Weyl’s Unitary Trick.
There exists a Hermitian inner product on V which is invariant under ρ, i.e. 〈v|w〉 =
〈ρ(g) · v|ρ(g) · w〉 for all g ∈ G.

Proof. Let [· · · | · · · ] be any Hermitian inner product on V , e.g. the standard one. Let
〈· · · | · · · 〉 be the average

〈v|w〉 =
1

|G|
∑
g∈G

[ρ(g) · v|ρ(g) · w] (11)

First, 〈· · · | · · · 〉 is invariant. For all h ∈ G, 〈ρ(h) · v|ρ(h) · w〉 = 1
|G|
∑

g∈G[ρ(gh) · v|ρ(gh) · w]
but g → gh is a permutation of G. So all we did was permute the average, but that doesn’t
change the average since you just add it up and divide. So it’s invariant. It’s also still an
inner product: linear on the left because sums are linear. It’s also semilinear in w again
because of the sums. It’s also still positive definite: If you take the average of a bunch of
positive numbers, it is still positive. Note that G must be finite; otherwise our algebra would
not work out (you might get infinity when you sum).

Corollary 11.27. Any linear representation of the finite group G over C is a ⊕ of irreducible
representations.

Proof. IfW ⊆ V is a stable subspace under ρ, thenW⊥ (defined using the invariant 〈· · · | · · · 〉)
is also stable. Proceed by induction on decreasing dimension. If W is irreducible, stop. If
not, find a stable W1 ⊂ W and then W will split as W1 ⊕W⊥

1 . If either is not irreducible,
split further. If either is irreducible, you are done with that side.

Definition 11.28. Any mathematical theory is completely reducible if all indecompos-
ables are irreducibles.

We have just proved that linear representations over C is a completely reducible theorem.

11.4 Characters and Character Tables

11.4.1 Preliminaries

Throughout, G is a finite group, V,W are vector spaces over C, ρ : G→ GL(V ), dim(V ) = n,
ρ′ : G→ GL(W ), dim(W ) = m, and a G-map τ takes V → W in the commutative diagram
sense (for all g ∈ G, V →ρ(g) V and W →ρ′(g) W .

Lemma 11.29. The kernel and image of a G-map are G-stable.
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Proof. For kernel, we suppose τ(v) = 0. Then for all g, τ(ρ(g) ·v) = ρ′(g)τ(v) = ρ′(g) ·0 = 0.
Thus, ρ(g) · v ∈ Ker(τ), as desired, for all v ∈ Ker(τ). Also Ker(τ) ⊆ {ρ(g) · v : τ(v) = 0}
since choosing g = e gives ρ(e) · v = v. Thus Ker(τ) = {ρ(g) · v : τ(v) = 0} for all g ∈ G.

For the image, let τ(v) = w, where v ∈ V and w ∈ W . Then for all g, τ(ρ(g) · v) =
ρ′(g)τ(v) = ρ′(g)w ∈ W for all g ∈ G, since ρ′(g) ∈ W and w ∈ W . Then, since ρ′(e)
is identity in W , we have W ⊆ {ρ′(g)w : w ∈ W} = {τ(ρ(g) · v) : v ∈ V }. Thus, W =
{τ(ρ(g) · v) : v ∈ V }, and is stable with respect to the representation of G.

Lemma 11.30. Schur’s Lemma.
This is the biggest bang for your buck you can get, since the proof is simple but has a lot of
consequences. You can use this in representing things in Hilbert spaces as well. Let V,W be
irreducible representations of G. Let τ : V → W be a G-map. Then

1. Either V ∼= W or τ = 0.

2. If V = W , then ∃λ ∈ C s.t. τ = λ · I (scalar multiple of the identity matrix).

This is taking first take two irreducible representations, and τ is trying to intertwine. If the
representations are different, you can’t have a τ that reconciles them. However, if they are
congruent, then there is a way to intertwine them, but the only way is to multiply them by
a scalar, and this commutes with anything. Only the easiest possible way to intertwine them
will ever work.

Proof. Ker(τ) is a G-stable subspace of V . Irreducible means that Ker(τ) = V or {0}. If the
kernel is V , then everyone dies! and goes to zero. So you’re done. If the kernel is 0, then only
0 goes to 0 and τ is injective. Im(τ) is G-stable, and W is irreducible. Therefore, Im(τ) = {0}
or W . If the image is 0, then τ = 0 and we’re done. Else, τ is surjective. Therefore, either
τ is 0 or it is bijective, and hence has an inverse function τ−1. We claim that τ−1 is an
isomorphism of representations. In other words, we want to prove τ−1 intertwines. We can
say τ−1 : W → V . τ−1 intertwines iff ρ(g) ◦ τ−1 = τ−1 ◦ ρ(g), iff ρ(g) = τ−1 ◦ ρ′(g) ◦ τ , iff
τ ◦ ρ(g) = ρ′(g) ◦ τ , which is given (definition of commutative diagrams).

Now we prove the second statement. If τ : V → V and is 0, then we’re done and λ = 0.
If not, then there is at least one eigenvalue λ and one non-zero eigenvector, τ(v) = λv. Note
that here we need C is algebraically closed. There’s two assumptions we made about the
field: First that there are no mod p components, and secondly algebraic closure. You can do
it over the other fields later, but first you have to do it over C to learn what the patterns are,
and then you can extend them. Now, λI is certainly intertwining, since scalars commute.
Differences of intertwining operators are also intertwining, so τ − λI is intertwining. But
(τ − λI)(v) = τ(v) − λv = λv − λv = 0. So Ker(τ − λI) 6= {0}, but it’s also G-stable and
irreducible. It’s not 0, therefore the kernel is the whole thing, i.e. V . Thus τ − λI = 0 and
τ = λI. Note that {λI|λ ∈ C} is a one dimensional vector space.

11.4.2 Characters

This theory is in large part due to Frobenius, in the late 1800s. Frobenius saw the importance
of the trace operator. Let’s recall some facts about trace. If vector space V has a basis {ei},
then you can write each ρ(g) as a matrix A.
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Definition 11.31. Trace.
Trace(A) =

∑n
i=1Aii. If you change the basis, well we have A → SAS−1, where S is

invertible and in GLn(C). Then Trace(A) =Trace(SAS−1). This eventually gives you that
the characteristic polynomial, which by definition is det(ρ(g)−λI), where λ is some variable.
Then this is λn − (Trace(ρ(g)))λn−1 + · · · + (−1)ndet(ρ(g)). Thus it’s easy to see that the
characteristic polynomial is invariant under conjugation by S. (Also, if you prove/recall the
circular property of trace, we simply have Trace(SAS−1) = Trace(AS−1S) = Trace(A)).
As another side note, the terms we left out in the characteristic polynomial expansion are
interesting in algebraic geometry. Anyways, we can rewrite the characteristic polynomial as
(λ − r1) · · · (λ − rn), where the ri are roots of the polynomial. This equals λn − (r1 + · · · +
rn)λn−1 + · · ·+ (−1)n(r1 · · · rn). A corollary is that Trace(ρ(g)) = λ1 + · · ·+λn, where λi are
the eigenvalues of ρ(g), counted with multiplicities (This can be easily seen by calculating
the the trace of ATA using the SVD decomposition, and noting that the squares of singular
values are eigenvalues).

Definition 11.32. The character of ρ is χ(g) = Trace(ρ(g)), for all g ∈ G. It’s denoted
χρ, χV . The properties are

1. χ(e) = n. This is the dimension of the representation, and is clear from the fact that
the identity matrix has n ones on the diagonal.

2. χ(hgh−1) = χ(g) for all h ∈ G. ρ(hgh−1) = ρ(h)·ρ(g)·ρ(h)−1. Thus Trace(LHS) =Trace(ρ(g)),
since conjugation by S = ρ(h) does not change the trace.

3. χ(g−1) = χ(g). If λj is an eigenvalue of ρ(g), then 1
λj

is an eigenvalue of ρ(g−1). Now,

χ(g) = λ1+· · ·+λn. Therefore, χ(g−1) = 1
λ1

+· · ·+ 1
λn

. This looks kind of ugly. However,

since G is finite, g has finite order d. Therefore gd = e. That means that λdj = 1. Since
we are over the complex numbers, all eigenvalues are dth roots of unity, and in particular,
1
z

= z, and thus 1
λj

= λj. Thus χ(g−1) = λ1 + · · ·+ λn = λ1 + · · ·+ λn = χ(g).

Definition 11.33. A class function on G is a function that takes a constant value on each
conjugacy class.

Corollary 11.34. Characters are class functions. This follows from property 2 of characters,
since conjugation doesn’t do anything to the value of a character.

Now we give some properties about how characters act when we combine vector spaces.

Lemma 11.35. χV⊕W = χV + χW .

Proof. The representation of the direct sum space is just[
ρ(g) 0

0 ρ′(g)

]
which is clearly maintaining the trace along each, and summing traces is obvious.

Lemma 11.36. χV ∗ = χV

Proof. ρ∗ acts on V ∗ as ρ(g−1)T , and from property 3 we have χ(g−1) = χ(g). The transpose
doesn’t change the trace, so we are done.
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Lemma 11.37. χV⊗W = χV · χW .

Proof. We saw before that there exists a G-invariant Hermitian inner product 〈·, ·〉 on V .
You can change coordinates so that 〈·, ·〉 becomes the standard Hermitian inner product
(dot product over complex numbers, the only difference is you conjugate the second term).

Then all ρ(g) are unitary, which just means that ρ(g−1) = ρ(g)
T

. These are like orthogonal
matrices in complex numbers. We’re basically saying everything can be done as rotations
or reflections. Unitary matrices are also diagonalizable. That means you can choose an
eigenbasis for this particular g v1, · · · , vn of V so that ρ(g) · vi → λivi for i = 1, · · · , n. Do
the same for W , and then we get ρ(g) : wj → µjwj for j = 1, · · · ,m. Then the basis for the
tensor product V ⊗W is just vi⊗wj, i = 1, · · · , n; j = 1, · · · ,m, and thus dim(V ⊗W ) = nm.
ρ(g) acts by vi ⊗ wj → λiµj(vi ⊗ wj). Then as a matrix in lexicographic order (order by
i, then by j, for λiµj), we have that this action has an nm × nm matrix whose diagonal
entries are λ1µ1, · · · , λ1µm, λ2µ1, · · · , · · · , λnµm, and thus the trace is

∑n
i=1

∑m
j=1 λiµj =

(λ1 + · · ·+ λn)(µ1 + · · ·+ µn) = χV (g) · χW (g).

Remark 11.38. Note that we have χHom(V,W ) = χV ∗⊗W = χV ∗ · χW = χV · χW .

11.4.3 Projections

Definition 11.39. Let A be any vector space and B be any subspace. A projection onto
B is a linear map from φ : A→ B such that

1. Im(φ) = B

2. φ2 = φ. A general projection map from R3 → R2 means to slide down some parallel
lines (for instance, rays of the sun) onto a table. Intuitively, a point in the table won’t
move. Projection onto a table entails not moving points on the table, but moving
other points to the table. φ2 = φ comes in as follows: If you do φ again, well, nothing
will change! Since you already projected everything onto the tabletop! Ker(φ) is the
subspace you project along. A = Ker(φ) ⊕ Im(φ). In the sun analogy, Im(φ) is the
tabletop and Ker(φ) is the rays from the sun which go through the origin.

Now let V be any representation such that V ∼= V ⊕k11 ⊕ V ⊕k22 ⊕ · · · ⊕ Vi which are are
the irreducible representations of G. WLOG V1 is the trivial representation of G (where
everything maps to 0). Note that V G, the invariants under ρ, = V ⊕k11 , by Schur’s Lemma
(or, if anything were fixed in there, then it must stay stable, but everything else is moving).
Can we get a formula for projecting onto the trivial part?

Theorem 11.40. First Projection Formula.
The map φ : 1

|G|
∑

g∈G ρ(g), which is the average of all representation maps on V , is a

projection onto V G.

Proof. First we prove that Im(φ) ⊆ V G. Let v ∈ V . For any h ∈ G, we claim that
ρ(h) · φ(v) = φ(v). This holds because multiplying all the g ∈ G by h just permutes the
sum! So the average does not change. Specifically, ρ(h) · φ(v) = 1

|G|
∑

g∈G ρ(hg) · v. Now we

show that V G ⊆Im(φ). Let v ∈ V G. Then φ(v) = 1
|G|
∑

g ρ(g) · v = 1
|G|
∑

g v = 1
|G| |G|v = v,

since ρ(g) fixes v ∈ V G by definition. Thus φ also fixes v for v in the space we are projecting
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onto, a necessary property for projections. Note that if the field were Zp, and if p||G|, then
you couldn’t do this since this whole averaging formula is dividing by 0! As a side note,
representation theory can be done mod p, and is called modular representation theory and
is harder, but you can’t do it the way we’re doing it here. After you fix a group, only finitely
many paramters divide its order; these are the “annoying primes”.

Now we want to prove that φ2 = φ. This is just fun with combinatorics. We have

φ2(v) = 1
|G|
∑

h∈G ρ(h)
(

1
|G|
∑

g∈G ρ(g) · v
)

= 1
|G|2
∑

(h,g)∈G×G ρ(hg) · v. Then let t ∈ G where

hg = t. Now we can write 1
|G|2
∑

t∈G
∑

g∈G ρ(t) · v where you have that h = tg−1. Then, this

equals 1
|G|2
∑

t∈G |G| · ρ(t) · v = 1
|G|
∑

t∈G ρ(t) · v = φ(v), and we are done.

Remark 11.41. φ is a projection. Trace(φ) = dim(V G). For any projection of A onto B,
take a basis in B, and extend to basis of A along Ker(φ). Then we can write φ = [ I 0 ]. Thus,
Trace(φ) = dim(B).

Now everything comes together. Now let V,W be two irreducible representations of G. By
Schur’s Lemma, dim(HomG(V,W )) = 1 if V ∼= W , and 0 otherwise. Then, dim(HomG(V,W )) =
dim(Hom(V,W )G). This is equal to the trace of the projection φ = 1

|G|
∑

g∈G ρ(g) onto

Hom(V,W )G, where ρ are representations on Hom(V,W ) by the previous theorem. The
trace of φ is the average of Trace(ρ(g)) over G, and thus the average of the characters:
Trace(φ) = 1

|G|
∑

g χρ(g), which can be written as 1
|G|
∑

g∈G χHom(V,W )(g). Recalling that

Hom(V,W ) ∼= V ∗ ⊗W , this expression equals 1
|G|
∑

g∈G χV ∗⊗W (g) = 1
|G|
∑

g∈G χV (g) · χW (g).

Let’s write it all out, letting φ be the projection onto Hom(V,W )G:

1 or 0 = dim (HomG(V,W )) = dim
(
Hom(V,W )G

)
= Trace(φ)

=
1

|G|
∑
g∈G

χ(g) =
1

|G|
∑
g∈G

χV (g) · χW (g) (12)

where the value is 1 if V ∼= W and 0 otherwise. Thus, we have the Main Theorem.

Theorem 11.42. The characters of the representations of G carry a Hermitian inner product

〈θ, ψ〉 =
1

|G|
∑
g∈G

θ(g) · ψ(g) (13)

The characters of irreducible representations are an orthonormal set. So you get an or-
thonormal basis!

Thus, each representation of finite group G can be expressed as a vector of dimension |G|
of the characters of the elements of G. Since characters are class functions, we can express
this vector in shorthand by writing down only the values of the characters for each conjugacy
class, and writing the number of elements in the conjugacy class in parentheses. Note that if
we did not write down the characters in this compact form, the character matrix of dimensions
(# representations) ×|G| would have redundant columns. Another interesting fact is that the
number of conjugacy classes is equivalent to the number of irreducible representations and
this number is also the dimension of the character table matrix (expressed in the compact
form).
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In terms of this language, the previous theorem simply states that under the defined Her-
mitian inner product, these character vectors of irreducible representations are orthonormal.
Since direct sums of irreducible representations define any linear representation of the finite
group G, the character vectors of irreducible representations give an orthonormal basis for
linear representations.

11.4.4 Character Table of S3

The columns are the conjugacy classes of S3. There is only one e, 3 conjugates for (12), and
2 conjugates in the conjugacy class of (123). Well, we must have that the number of the
conjugacy classes equals the dimension of the character-space. There is a trivial representa-
tion (the first row), the sign representation (second row), and the standard representation,
which is the representation on the triangle. Well the identity has trace 2 since we are dealing
with I2, and this is the dimension of the space we’re acting on. Then note that a flip has

matrix [ 1 0
0 −1 ], so the trace is 0. Finally, rotation is

[
cos(120) −sin(120)
sin(120) cos(120)

]
. The trace of this is just

Trace(
[
−1/2 −

√
3/2√

3/2 −1/2

]
) = −1.

Table 5: Character Table of S3

. e (..) (...)
trivial 1 1 1
sign 1 −1 1
standard 2 0 −1
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